ebook img

Look-ahead Sigma-Delta Modulation and its application to Super PDF

339 Pages·2010·4.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Look-ahead Sigma-Delta Modulation and its application to Super

Look-ahead Sigma-Delta Modulation and its application to Super Audio CD Erwin Janssen The work described in this thesis has been carried out at the Philips Research Laboratories and NXP Semiconductors, Eindhoven, the Netherlands, as part of the Philips/NXP research program. Janssen, E. Look-ahead Sigma-Delta Modulation and its application to Super Audio CD Proefschrift Technische Universiteit Eindhoven, 2010 Trefwoorden: 1-bitaudio,digital-to-digitalconversion,linearization,look- ahead, noise shaping, sigma-delta modulation, signal processing A catalogue record is available from the Eindhoven University of Tech- nology Library ISBN: 978-90-386-2364-1 (cid:176)c E. Janssen 2010 All rights reserved. Reproduction in whole or in part is prohibited without the written consent of the copyright owner. Look-ahead Sigma-Delta Modulation and its application to Super Audio CD PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op woensdag 1 december 2010 om 16.00 uur door Erwin Janssen geboren te Ede Dit proefschrift is goedgekeurd door promotor: prof.dr.ir. A.H.M. van Roermund Samenstelling promotiecommissie: prof.dr.ir. A.H.M. van Roermund Technische Universiteit Eindhoven prof.dr.ir. A.C.P.M. Backx Technische Universiteit Eindhoven dr.ir. J.A. Hegt Technische Universiteit Eindhoven dr.ir. P.C.W. Sommen Technische Universiteit Eindhoven prof.dr.ir. B. Nauta Universiteit Twente prof.dr.ir. G. Gielen Katholieke Universiteit Leuven dr. D. Reefman Philips Research dr.ir. L.J. Breems NXP Semiconductors Contents List of symbols and abbreviations vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . 4 2 Basics of sigma-delta modulation 7 2.1 AD, DD, and DA Sigma-Delta conversion . . . . . . . . . 11 2.1.1 AD conversion . . . . . . . . . . . . . . . . . . . . 11 2.1.2 DD conversion . . . . . . . . . . . . . . . . . . . . 12 2.1.3 DA conversion . . . . . . . . . . . . . . . . . . . . 12 2.2 Sigma-Delta structures . . . . . . . . . . . . . . . . . . . . 13 2.3 Linear modeling of an SDM . . . . . . . . . . . . . . . . . 16 2.4 SDM performance indicators . . . . . . . . . . . . . . . . 22 2.4.1 Generic converter performance . . . . . . . . . . . 23 2.4.2 SDM specific functional performance . . . . . . . . 29 2.4.3 SDM specific implementation costs . . . . . . . . . 34 2.4.4 Figure-Of-Merit of an SDM . . . . . . . . . . . . . 36 3 Transient SDM performance 39 3.1 Measuring signal conversion quality. . . . . . . . . . . . . 39 3.1.1 Steady-state. . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Non-steady-state . . . . . . . . . . . . . . . . . . . 40 3.2 Time domain SINAD measurement . . . . . . . . . . . . . 41 3.3 Steady-state SINAD measurement analysis . . . . . . . . 44 3.3.1 Obtaining the linearized STF . . . . . . . . . . . . 45 3.3.2 Time domain SINAD measurement . . . . . . . . . 49 3.4 Non-steady-state SINAD measurement analysis . . . . . . 50 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 52 i Contents 4 Noise-shaping quantizer model 55 4.1 Generic quantizer . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Noise-shaping quantizer . . . . . . . . . . . . . . . . . . . 57 4.3 Noise-shaping quantizer with multiple cost functions . . . 59 4.4 Specific realization structures . . . . . . . . . . . . . . . . 60 5 Look-ahead sigma-delta modulation 63 5.1 Noise-shaping quantizer with look-ahead . . . . . . . . . . 63 5.2 Look-ahead enabled SDM model . . . . . . . . . . . . . . 65 5.3 Look-ahead principle . . . . . . . . . . . . . . . . . . . . . 67 5.3.1 Quantizer cost function . . . . . . . . . . . . . . . 69 5.4 Obtaining information about the future . . . . . . . . . . 70 5.4.1 Approximated future input . . . . . . . . . . . . . 71 5.4.2 Actual future input . . . . . . . . . . . . . . . . . 71 5.5 Full look-ahead algorithm . . . . . . . . . . . . . . . . . . 72 5.6 Linear modeling of a look-ahead SDM . . . . . . . . . . . 75 5.6.1 Boundary conditions and assumptions . . . . . . . 76 5.6.2 Feed-forward look-ahead SDM . . . . . . . . . . . 78 5.6.3 Feed-back look-ahead SDM . . . . . . . . . . . . . 80 5.7 Benefits and disadvantages of look-ahead. . . . . . . . . . 82 5.7.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7.2 Disadvantages. . . . . . . . . . . . . . . . . . . . . 86 5.8 Look-ahead AD conversion . . . . . . . . . . . . . . . . . 87 5.8.1 Potentialbenefitsanddisadvantagesoflook-ahead in AD conversion . . . . . . . . . . . . . . . . . . . 87 5.8.2 Feasibility of a look-ahead ADC . . . . . . . . . . 88 5.8.3 Hybrid look-ahead ADC . . . . . . . . . . . . . . . 90 5.8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 92 5.9 Look-ahead DD conversion . . . . . . . . . . . . . . . . . 92 5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6 Reducing the complexity of LA DD conversion 97 6.1 Full look-ahead . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.1 Completeresponsecalculationwithreuseofinter- mediate results . . . . . . . . . . . . . . . . . . . . 98 6.1.2 Select and continue with half of the solutions . . . 98 6.1.3 Linear decomposition of the filter response . . . . 99 6.1.4 Conditional computation of the solutions . . . . . 101 6.1.5 Calculating multiple output symbols per step . . . 101 6.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Pruned look-ahead . . . . . . . . . . . . . . . . . . . . . . 104 6.2.1 Motivation for pruning . . . . . . . . . . . . . . . . 104 6.2.2 Basic pruned look-ahead modulation . . . . . . . . 105 ii Contents 6.2.3 Pruned look-ahead modulation with reuse of results108 6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Pruned look-ahead modulator realizations . . . . . . . . . 120 6.3.1 Trellis sigma-delta modulation . . . . . . . . . . . 121 6.3.2 Efficient Trellis sigma-delta modulation . . . . . . 122 6.3.3 Pruned Tree sigma-delta modulation . . . . . . . . 124 6.3.4 Pruned Tree sigma-delta modulation for SA-CD . 126 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7 Trellis sigma-delta modulation 129 7.1 Algorithm - Kato model . . . . . . . . . . . . . . . . . . . 130 7.1.1 Hidden Markov model . . . . . . . . . . . . . . . . 131 7.1.2 Algorithm steps. . . . . . . . . . . . . . . . . . . . 133 7.2 Algorithm - pruned look-ahead model . . . . . . . . . . . 137 7.3 Verification of the linearized NTF and STF . . . . . . . . 139 7.3.1 NTF . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3.2 STF . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.4 Relation Trellis order and Trellis depth . . . . . . . . . . . 142 7.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . 143 7.4.2 TrellisdepthasafunctionoftheTrellisorderand the signal amplitude . . . . . . . . . . . . . . . . . 144 7.4.3 Trellis depth as a function of the signal frequency. 146 7.4.4 Trellis depth as a function of the loop-filter con- figuration . . . . . . . . . . . . . . . . . . . . . . . 147 7.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . 148 7.5 Functional performance . . . . . . . . . . . . . . . . . . . 149 7.5.1 SNR, SINAD, THD and SFDR . . . . . . . . . . . 149 7.5.2 Converter stability . . . . . . . . . . . . . . . . . . 155 7.5.3 Noise modulation . . . . . . . . . . . . . . . . . . . 160 7.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 163 7.6 Implementation aspects . . . . . . . . . . . . . . . . . . . 164 7.6.1 Required computational resources . . . . . . . . . 164 7.6.2 Look-ahead filter unit . . . . . . . . . . . . . . . . 164 7.6.3 Output symbol selection . . . . . . . . . . . . . . . 168 7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 169 8 Efficient Trellis sigma-delta modulation 173 8.1 Reducing the number of parallel paths . . . . . . . . . . . 174 8.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 8.3 Relation between N and M . . . . . . . . . . . . . . . . . 178 8.4 Required history length . . . . . . . . . . . . . . . . . . . 180 8.5 Functional performance . . . . . . . . . . . . . . . . . . . 183 8.5.1 SNR, SINAD, THD and SFDR . . . . . . . . . . . 183 iii Contents 8.5.2 Converter stability . . . . . . . . . . . . . . . . . . 188 8.5.3 Noise modulation . . . . . . . . . . . . . . . . . . . 189 8.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 192 8.6 Implementation aspects . . . . . . . . . . . . . . . . . . . 194 8.6.1 Selection step . . . . . . . . . . . . . . . . . . . . . 194 8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 196 9 Pruned Tree sigma-delta modulation 199 9.1 Removing the test for uniqueness . . . . . . . . . . . . . . 199 9.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.2.1 Initialization phase . . . . . . . . . . . . . . . . . . 202 9.2.2 Operation phase . . . . . . . . . . . . . . . . . . . 203 9.3 Required history length . . . . . . . . . . . . . . . . . . . 204 9.4 Functional performance . . . . . . . . . . . . . . . . . . . 206 9.4.1 SNR, SINAD, THD and SFDR . . . . . . . . . . . 206 9.4.2 Converter stability . . . . . . . . . . . . . . . . . . 210 9.4.3 Noise modulation . . . . . . . . . . . . . . . . . . . 213 9.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 215 9.5 Implementation aspects . . . . . . . . . . . . . . . . . . . 217 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10 Pruned Tree sigma-delta modulation for SA-CD 223 10.1 Requirements of an SA-CD modulator . . . . . . . . . . . 224 10.2 SA-CD lossless data compression . . . . . . . . . . . . . . 226 10.3 Dual optimization . . . . . . . . . . . . . . . . . . . . . . 230 10.3.1 Predictor cost function . . . . . . . . . . . . . . . . 231 10.3.2 Combining the cost functions . . . . . . . . . . . . 232 10.3.3 Spectral shaping . . . . . . . . . . . . . . . . . . . 234 10.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.5 Functional performance . . . . . . . . . . . . . . . . . . . 240 10.5.1 Lossless data compression . . . . . . . . . . . . . . 240 10.5.2 SNR, SINAD, THD and SFDR . . . . . . . . . . . 242 10.5.3 Converter stability . . . . . . . . . . . . . . . . . . 245 10.5.4 Noise modulation . . . . . . . . . . . . . . . . . . . 247 10.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . 249 10.6 Implementation aspects . . . . . . . . . . . . . . . . . . . 251 10.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 252 11 Comparison of look-ahead SDM techniques 255 11.1 Alternative look-ahead techniques . . . . . . . . . . . . . 255 11.2 Algorithm comparison . . . . . . . . . . . . . . . . . . . . 257 11.3 Functional performance comparison. . . . . . . . . . . . . 260 11.3.1 SNR, SINAD, THD and SFDR . . . . . . . . . . . 260 iv

Description:
1.4 Organization of the thesis 4. 2 Basics of sigma-delta modulation. 7. 2.1 AD, DD, and DA Sigma-Delta conversion . 11. 2.1.1 AD
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.