ebook img

Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation PDF

22 Pages·2017·1.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation

SS symmetry Article Logical and Geometrical Distance in Polyhedral Aristotelian Diagrams in Knowledge Representation LorenzDemey1,*andHansSmessaert2 1 CenterforLogicandAnalyticPhilosophy,KULeuven,3000Leuven,Belgium 2 ResearchGrouponFormalandComputationalLinguistics,KULeuven,3000Leuven,Belgium; [email protected] * Correspondence:[email protected];Tel.:+32-16-328855 AcademicEditor:NeilY.Yen Received:28August2017;Accepted:27September2017;Published:29September2017 Abstract: Aristotelian diagrams visualize the logical relations among a finite set of objects. These diagrams originated in philosophy, but recently, they have also been used extensively in artificial intelligence, in order to study (connections between) various knowledge representation formalisms. Inthispaper,wedeveloptheideathatAristoteliandiagramscanbefruitfullystudied as geometrical entities. In particular, we focus on four polyhedral Aristotelian diagrams for the B Booleanalgebra ,viz.therhombicdodecahedron,thetetrakishexahedron,thetetraicosahedron 4 and the nested tetrahedron. After an in-depth investigation of the geometrical properties and interrelationshipsofthesepolyhedraldiagrams,weanalyzethecorrelation(orlackthereof)between logical(Hamming)andgeometrical(Euclidean)distanceineachofthesediagrams. Theoutcome of this analysis is that the Aristotelian rhombic dodecahedron and tetrakis hexahedron exhibit thestrongestdegreeofcorrelationbetweenlogicalandgeometricaldistance;thetetraicosahedron performsworse;andthenestedtetrahedronhasthelowestdegreeofcorrelation. Finally,theseresults areusedtoshednewlightontherelativestrengthsandweaknessesofthesepolyhedralAristotelian diagrams,byappealingtothecongruenceprinciplefromcognitiveresearchondiagramdesign. Keywords: logical geometry; Boolean algebra; knowledge representation; bitstrings; rhombic dodecahedron; tetrakis hexahedron; tetraicosahedron; nested tetrahedron; Hamming distance; Euclideandistance;congruenceprinciple 1. Introduction Aristotelian diagrams visualize the logical relations among a finite set of elements from some logical,lexicalorconceptualsystem. Thehistoricaloriginsofthesediagramscanultimatelybetraced backtothelogicalworksofAristotleandhiscommentators[1]. Theoldestandmostwidely-known exampleistheso-called‘squareofopposition’forthecategoricalstatementsfromAristotle’slogical system of syllogistics; cf. Figure 1. Throughout history, distinguished philosophers such as John Buridan,GottfriedLeibnizandGottlobFregehavemadeuseofsquares,butalsolarger,morecomplex Aristoteliandiagramstoillustrateandexplaintheirtheorizing[2–4]. However,becauseoftheubiquity ofthelogicalrelationsthattheyvisualize,Aristoteliandiagramsarenowalsousedinotherscientificand engineeringdisciplines,suchascognitivescience[5,6],neuroscience[7],naturallanguageprocessing[8], law[9–11],linguistics[12–15]andartificialintelligence. Withinthelatterfield,Aristoteliandiagrams havebeenusedtostudyvariouslogic-basedapproachestoknowledgerepresentation,includingfuzzy logic[16–20],modal-epistemiclogic[21–25]andprobabilisticlogic[26–28]. Furthermore,Aristotelian diagrams are also used extensively to study (the connections between) other types of knowledge representation formalisms, such as formal argumentation theory [29–32], fuzzy set theory [33–36], formalconceptanalysisandpossibilitytheory[37–39],roughsettheory[37,40,41],multiple-criteria Symmetry2017,9,204;doi:10.3390/sym9100204 www.mdpi.com/journal/symmetry Symmetry2017,9,204 2of22 decision-making [42–44] and the theory of logical and analogical proportions [45–49]. In sum, then,Aristoteliandiagramshavecometoserveasvisualtoolsthatgreatlyfacilitatecommunication, researchandteachinginawidevarietyofdisciplinesthatdealwithlogicalreasoninginallitsfacets. Figure1.Squareofoppositionforthecategoricalstatementsfromsyllogistics. In the research program of logical geometry (see www.logicalgeometry.org), we study Aristotelian diagrams as objects of independent mathematical interest, i.e., regardless of any of their specific applications. We focus on logical issues such as informativity, Boolean complexity andlogic-sensitivity[50–52],butalsoonmorevisual/diagrammaticaspects,suchasinformational vs.computationalequivalenceofAristoteliandiagrams[53–55].Oneofthecrucialinsightsinthisareais thatAristoteliandiagramscanalsobefruitfullyseenastrulygeometricalentitiesandstudiedbymeans oftoolsandtechniquessuchasprojectionmatrices,Euclideandistance,symmetrygroups,etc.[54–57]. (Thishybridperspectiveondiagrams,treatingthemsimultaneouslyasdiagrammaticvisualizations ofanunderlyingabstractstructureandasgeometricalentitiesbythemselves,canalsobefoundin crystallography[58,59].) Theimportanceofthisgeometricalapproachisfurtherhighlightedbythe followingobservation: althoughmostAristoteliandiagramsthathavebeenusedintheliteratureso fararebasedonfairlysimple,two-dimensionalpolygonssuchassquares(cf.Figure1)andregular hexagonsandoctagons, inrecentyears, variousresearchershavealsostartedusingmorevisually complex,three-dimensionalAristoteliandiagrams,basedonpolyhedrasuchascubes,cuboctahedra andrhombicdodecahedra[38,60,61]. The present paper further develops and refines this geometrical perspective on Aristotelian diagrams. Inparticular,wewillconsiderfourthree-dimensional,polyhedralAristoteliandiagrams B that have recently been used to visualize the Boolean algebra , viz. the rhombic dodecahedron, 4 the tetrakis hexahedron, the tetraicosahedron, and the nested tetrahedron. (In his research on paraconsistent logic, Béziau [62] has used various other Aristotelian diagrams, such as hexagons andoctagons,butalsoanotherpolyhedron,viz.astellarrhombicdodecahedron. Thepreciselogical andgeometricalrelationshipbetweenBéziau’spolyhedralAristoteliandiagramandtheonesdiscussed inthispaperisdiscussedinmoredetailin[63].) Thiscasestudyisespeciallyrelevantinthecontext ofartificialintelligence,sinceeachofthesefourvisualizationshasrecentlybeenusedinAI-related research. In particular, the rhombic dodecahedron has been used in research on modal logic and dynamic epistemic logic [22,61], the tetrakis hexahedron and tetraicosahedron have been used to investigatemodallogic[25,60,64,65],andthenestedtetrahedronhasbeenusedtostudy(connections between)theknowledgerepresentationformalismsofroughsettheory,formalconceptanalysisand B possibilitytheory[38,40]. (However,itshouldalsobenotedthatourfocuson precludesusfrom 4 studyingAristoteliandiagramsforknowledgerepresentationformalismsthatgobeyondaBoolean Symmetry2017,9,204 3of22 setup,suchasfuzzylogicandsettheory[16–20,33–36]. Thesystematic(logicalanddiagrammatic) investigationofsuchnon-classicalAristoteliandiagramsisamatterofongoingresearch.) The paper makes two crucial new contributions to this line of research. First of all, it offers adetailedinvestigationofthegeometricalpropertiesof,andinterrelationshipsbetween,thesefour polyhedral Aristotelian diagrams. Some of these geometrical properties/interrelationships are immediatelyclearfromthevisualfeaturesofthepolyhedra,butsomeofthemaremoreabstractin nature(e.g.,inthecaseoftwopolyhedrathat,despitetheirclearvisualdifferences,canbeobtainedby meansoftwodifferenttypesofprojectionsofoneandthesamehigher-dimensionalpolytope).Secondly, itanalyzesthecorrespondence(orlackthereof)betweenthelogicalandgeometricalnotionsofdistance ineachofthesefourpolyhedralAristoteliandiagrams. Logicaldistanceisdefinedintermsofthe B Hammingdistancebetweenthebitstringrepresentationsoftheelementsof ,whereasgeometrical 4 distanceisidentifiedwiththeEuclideandistancebetweeneachpolyhedron’sverticescorrespondingto thosebitstringrepresentations. Theresultsofthiscomparativeanalysiswillthenbeusedtoshednew lightontherelativestrengthsandweaknessesofthesepolyhedralAristoteliandiagrams,byappealing tothecongruenceprinciplefromdiagramdesign[66,67]. As will be indicated throughout the remainder of the paper, there exists some earlier work B on polyhedral Aristotelian diagrams for . For example, Moretti [68] sketches the outlines of a 4 comparisonbetweentheAristoteliantetraicosahedronandnestedtetrahedron, butitgoesintofar less geometrical detail than the present paper, and does not deal with the Aristotelian rhombic dodecahedronandtetrakishexahedron. Similarly,Smessaertetal. [63,69]comparetheAristotelian rhombicdodecahedron,tetrakishexahedronandtetraicosahedron,butthesestudiesagaingointofar lessgeometricaldetailthanthepresentpaperanddonotaddresstheAristoteliannestedtetrahedron. Finally,Smessaertetal. [55,57]offeranin-depthgeometricalcomparisonoftheAristotelianrhombic B dodecahedronandnestedtetrahedronfor ,butthesepapersdonotdealwiththeAristoteliantetrakis 4 hexahedronandtetraicosahedron. B Thepaperisorganizedasfollows. Section2brieflypresentstheBooleanalgebra ,itsbitstring 4 representationanditspolyhedralHassediagram. Section3,thenprovidesadetailedoverviewofthe B fourpolyhedralAristoteliandiagramsfor thathavebeenproposedintheliterature,focusingontheir 4 geometricalpropertiesandinterrelations,aswellasontheirlogicalapplications. Section4introduces thenotionsoflogical(Hamming)distanceandgeometrical(Euclidean)distanceandanalyzeshow closelythesetwonotionsofdistancearecorrelatedineachofthefourpolyhedralAristoteliandiagrams B for . Furthermore,theresultsofthiscomparativeanalysisareinterpretedinlightofthecongruence 4 principlefromcognitivestudiesondiagramdesign. Finally,Section5brieflysummarizestheresults obtainedinthispaperandofferssomequestionsforfurtherresearch. B 2. TheBooleanAlgebra andItsPolyhedralHasseDiagram 4 The notion of a Boolean algebra B = (cid:104)B,∧,∨,¬,⊥,(cid:62)(cid:105) is well-known in abstract algebra [70]. AsaspecialcaseoftheStonerepresentationtheorem,everyfiniteBooleanalgebraisisomorphictothe powersetofsomefiniteset. Inparticular,theBooleanalgebraB isisomorphicto℘({x ,x ,x ,x }), 4 1 2 3 4 and elements of B can be represented as subsets of {x ,x ,x ,x } (the identity of the elements x 4 1 2 3 4 i is irrelevant here). However, in logical geometry it is more customary to represent finite Boolean B algebrasbymeansofbitstrings[71]. Inparticular,theBooleanalgebra isrepresentedbymeansof 4 bitstringsoflength4,i.e.,B ∼= {0,1}4 (obviously,everybitstringoflength4uniquelycorresponds 4 to(thecharacteristicfunctionof)asubsetof{x ,x ,x ,x };forexample,thebitstring1010corresponds 1 2 3 4 tothesubset{x ,x }.)Thesebitstringscanbeusedtoprovideacoarse-grainedsemanticsforfragments 1 3 ofawidevarietyoflogicalsystems;see[51]forthemathematicaldetailsofthistechnique. In a Boolean algebra B, the notion of level is inductively defined as follows: L := {⊥} and 0 Ln+1 := {b ∈ B | ∃a ∈ Ln: a < band¬∃c ∈ B: a < c < b}. In the bitstring representation of B4, thelevelofabitstringsimplycorrespondstoitsnumberof1-bits;forexample0100∈ L and1011∈ L . 1 3 TheAristotelianrelationsareusuallydefinedforformulasofsomegivenlogicalsystem[50],butthis Symmetry2017,9,204 4of22 can easily be generalized to arbitrary Boolean algebras [72,73]. In the specific case of the bitstring representationofB ,wesaythattwobitstringsb ,b ∈ {0,1}4are: 4 1 2 contradictory(CD) iff b ∧b =0000 and b ∨b =1111, 1 2 1 2 contrary(C) iff b ∧b =0000 and b ∨b (cid:54)=1111, 1 2 1 2 subcontrary(SC) iff b ∧b (cid:54)=0000 and b ∨b =1111, 1 2 1 2 insubalternation(SA) iff b ∧b =b and b ∨b (cid:54)=b . 1 2 1 1 2 1 In the definition of CD, the condition that b ∧b = 0000 captures the informal idea that 1 2 contradictories‘cannotbetruetogether’,whiletheconditionthatb ∨b =1111capturestheinformal 1 2 ideathatthey‘cannotbefalsetogether’[72,73]. InthedefinitionsofCandSC,oneofthetwoidentity conditionsofCDisnegated: contrariescanbefalsetogether,whilesubcontrariescanbetruetogether. ThesetofAristotelianrelationsisfundamentallyhybridinnature: theoppositionrelationsCD,Cand B SCaredefinedusingthetopandbottomelementsof ,whiletheimplicationrelationSAisdefined 4 intermsofthebitstringsb andb themselves[50]. 1 2 Since Boolean algebras are a particular kind of partially ordered sets, they can be visualized bymeansofHassediagrams[74]. Thestandard,two-dimensionalHassediagramfor(thebitstring B representationof) isshowninFigure2a. Thisdiagramvisualizesnegationbymeansofcentral 4 symmetry: contradictory bitstrings are located at diametrically opposed vertices of the diagram. Furthermore, in this Hasse diagram, the logical ordering of levels corresponds to the vertical geometrical ordering of lines, from L at the bottom of the diagram up to L at the top. However, 0 4 several authors have also made use of polyhedra to provide alternative, three-dimensional Hasse B B diagramsfor [75,76]. Inparticular,Figure2bshowsaHassediagramfor basedonarhombic 4 4 dodecahedron.Justlikeitstwo-dimensionalcounterpart,thispolyhedralHassediagramalsovisualizes negationbymeansofcentralsymmetry,whereasthelogicalorderingoflevelsnowcorrespondstothe verticalgeometricalorderingofplanes,fromL atthebottomofthediagramuptoL atthetop. 0 4 Figure2. (a)Two-dimensionalHassediagramforB ;(b)Three-dimensionalHassediagramforB , 4 4 basedonarhombicdodecahedron(withtheplanescorrespondingtothelogicallevelsshowningray). Thegeometricalpropertiesoftherhombicdodecahedronwillbediscussedinmoredetailinthe next section. (This geometrical information will play an important role in our discussion of the (dis)similarities between the rhombic dodecahedron and the other polyhedra that are introduced inSection3, andisthusmostnaturallyathomeinthatsection.) Fornow, itsufficestoemphasize B that the rhombic dodecahedron is a very natural choice for a polyhedral Hasse diagram for , 4 because of a specific combination of logical and geometrical considerations. On the one hand, B the(bitstringrepresentationofthe)Booleanalgebra canalwaysberepresentedbymeansofan n n-dimensionalhypercube,withthelogicalbitvalues1/0correspondingtotheEuclideancoordinates +1/−1[77](forexample,thebitstring10101inB correspondstothevertex(1,−1,1,−1,1)inR5). 5 Symmetry2017,9,204 5of22 B Inparticular,theBooleanalgebra canthusberepresentedbymeansofafour-dimensionalhypercube, 4 i.e.,atesseract. Ontheotherhand,itiswell-knownthatthevertex-firstparallelprojectionofatesseract fromfour-spaceintothree-spaceisexactlyarhombicdodecahedron[56]. Inparticular,therhombic dodecahedroninFigure2bcanbeseenasthevertex-firstparallelprojectionofatesseractalongthe projectionaxisdefinedby(theverticescorrespondingto)thebitstrings1001and0110,becausethose arepreciselythetwobitstringsthatendupinthecenterofpolyhedron,ratherthanonitsexterior surface. Actually,inordertoavoidthat1001and0110entirelycoincidewitheachotherinthecenter of the polyhedron, a slight distortion in the projection axis has been introduced; this procedure is standard[78],andtheHasserhombicdodecahedroncanthereforebesaidtobea‘quasi-vertex-first projection’ofatesseract[56]. B 3. PolyhedralAristotelianDiagramsfor 4 B Intheprevioussection,wehaveintroducedtheBooleanalgebra andaspecificpolyhedral 4 Hassediagramforit. Intheremainderofthispaper, however, wewillratherfocusonpolyhedral B B Aristotelian diagrams for . The latter emphasize different logical aspects of ; in particular, 4 4 B theyfocusonclearlyvisualizingtheAristotelianrelationsholdingamongtheelementsof . Inorder 4 toachievethisgoal,otherlogicalinformationisdistortedorleftoutaltogether;forexample,thetop B andbottomelementsof ,i.e.,thenon-contingentbitstrings1111and0000,arenotshownatallinan 4 Aristoteliandiagram(becausetheyenterintoabundantlymany‘vacuous’Aristotelianrelations[50]), andthelogicalorderingoflevelsisnolongerreflectedinaverticalorderingofplanes. B AtleastfourdifferentpolyhedralAristoteliandiagramsfor havebeenproposedintheliterature. 4 B Thesediagramsallrepresentthesamelogicalstructure(viz. ),buttheyachievethisbymeansof 4 very different visual means. In Larkin and Simon’s terminology [79], these Aristotelian diagrams areinformationallyequivalent,buttheyneednotbecomputationallyequivalent,inthesensethat thevisualdifferencesbetweenthemmaysignificantlyinfluenceusercomprehension. Inthissection, wewillprovideanin-depthcomparativeoverviewofthesefourpolyhedralAristoteliandiagrams B for . 4 B 3.1. TheAristotelianRhombicDodecahedronfor 4 B We start our overview by considering the Aristotelian rhombic dodecahedron (RDH) for , 4 asshowninFigure3a. ThisAristoteliandiagramwasfirstproposedbySmessaert[61]inthecontext ofhisresearchongeneralizedquantifiersandmodallogicandlateradoptedbyDemey[22]inhis workonpublicannouncementlogic. TheHassediagramdiscussedinSection2andtheAristotelian diagramconsideredherearebothbasedonarhombicdodecahedron; theonlydifferencebetween B these diagrams concerns how the bitstrings of are mapped onto the vertices of these rhombic 4 dodecahedra;compareFigures2band3a. Symmetry2017,9,204 6of22 Figure3.(a)AristotelianrhombicdodecahedronforB ;(b)Therhombicdodecahedronasacubewith 4 pyramidsputontoeachofitssixfaces. The rhombic dodecahedron has 14 vertices, 24 edges and 12 (rhombic) faces; being a convex polyhedron,ithasEulercharacteristicχ = 2,i.e.,V−E+F = 2. Notethatthenumberofvertices (V =14)correspondsexactlytothenumberofcontingentbitstringsofB : thisBooleanalgebrahas 4 24 =16bitstringsintotal,soafterdiscarding1111and0000,weareleftwith14contingentbitstrings. TherhombicdodecahedronisaCatalansolid[80],andhasasitssymmetrygrouptheoctahedralgroup O (oforder48),whichitshareswithitsdualpolyhedron,thecuboctahedron[63,81,82]. Thelatter h is itself an Archimedean solid and has also been used as a polyhedral Aristotelian diagram [60]. Furthermore,therhombicdodecahedroniscloselyrelatedtoboththecubeandtheoctahedron(which arethemselvesdualtoeachother),asshowninFigure4[63,69,83]. Figure4.Therhombicdodecahedronasthecompoundofacubeandanoctahedron. B JustliketheHasserhombicdodecahedronfor discussedintheprevioussection,theAristotelian 4 B rhombic dodecahedron for is also the vertex-first parallel projection of a tesseract, but now 4 along the projection axis defined by (the vertices corresponding to) the bitstrings 1111 and 0000. Furthermore,sincethenon-contingentbitstrings1111and0000areirrelevantinAristoteliandiagrams, itisunproblematicthattheyexactlycoincidewitheachotherinthecenterofthepolyhedron,andhence, thereisnoneedtoinvokeaquasi-vertex-firstprojection.ByviewingtheHasseandAristotelianrhombic dodecahedraastwovertex-firstparallelprojectionsofatesseract,albeitalongdifferentprojectionaxes, wealsoobtainaunifiedgeometricalexplanationoftheirfundamentaldiagrammaticdifferences[56]. In particular, in the tesseract, the logical levels are ordered by means of hyperplanes going from Symmetry2017,9,204 7of22 (thevertexcorrespondingto)0000to(thevertexcorrespondingto)1111;however,iftheprojection ispreciselyalongthe1111/0000axis,thenthisorderingiscompletelyannihilated,sothattheresulting Aristotelianrhombicdodecahedronnolongervisuallyrepresentsthisorderingoflevels: theL -,L - 1 2 andL -bitstringsarescatteredthroughoutthepolyhedron[55,57]. 3 As is illustrated in Figure 3b, the rhombic dodecahedron can be seen as the result of putting asquarepyramidontoeachofthefacesofacube[84]. Theheightofthesesixpyramidsshouldbe suchthatthelateral,triangularfacesofadjacentpyramidslieinthesameplaneandtogetherform asingle,rhombicfaceoftherhombicdodecahedron. Itiseasytoshowthatifthecubehasedgelength (cid:96),thiscanbeachievedbyusingpyramidsofheight (cid:96). Inthesepyramids,thebaseisasquareofedge 2 length(cid:96)(viz.oneofthefacesofthecube),andthelateralfacesareisoscelestriangles(withoneedge √ oflength(cid:96)andtwooflength 3(cid:96));thelateralfacesareatanangleof45◦ tothebase. Thisperspective 2 ontherhombicdodecahedronwillbeusefullateron,whenwearecomparingitwithotherpolyhedra. ItwillbeconvenienttofixasetofstandardcoordinatesfortheverticesoftheAristotelianrhombic dodecahedron. Thecoordinatefunctionc : B → R3 showninTable1attheendofthissection RDH 4 B mapsthebitstringsof ontotheverticesoftheAristotelianrhombicdodecahedron[55,57]. Notethat 4 c (1111) = c (0000) = (0,0,0)andc (¬b) = −c (b)forallbitstringsb,i.e.,thetopand RDH RDH RDH RDH B bottomelementsof coincidewitheachotherinthecenteroftheAristotelianrhombicdodecahedron, 4 andlogicalnegationisvisualizedbymeansofcentralsymmetry. TheL -andL -bitstringsaremapped 1 3 ontothevertices (±1,±1,±1) andconstitutetwoequal-sizedtetrahedrathat‘interlock’witheach other to yield a cube, whereas the L -bitstrings are mapped onto the vertices (±2,0,0), (0,±2,0) 2 and(0,0,±2),whichconstituteanoctahedron;cf.Figure5. (Ofcourse,thevertices(±2,0,0),(0,±2,0) and(0,0,±2)canalsobeseenasthetopsofthepyramidsthathavebeenputoneachofthecube’ssix faces;cf.Figure3b.) Notethatthecubehasedgelengthtwo,andhencethepyramidsthatareputon topofthecube’sfaceshaveheightone;forexample,thetopfaceofthecubeliesintheplaney = 1; theapexofthepyramidthatisputontopofthisface,liesat(0,2,0). Table1.CoordinatefunctionsforthefourpolyhedralAristoteliandiagramsforB . 4 b∈B c (b) c (b) c (b) c (b) 4 RDH THH TIH NTH 0000 (0,0,0) (0,0,0) (0,0,0) (0,0,0) 1000 (−1,1,−1) (−1,1,−1) (−1,1,−1) (−1,1,−1) 0100 (−1,−1,1) (−1,−1,1) (−1,−1,1) (−1,−1,1) 0010 (1,−1,−1) (1,−1,−1) (1,−1,−1) (1,−1,−1) 0001 (1,1,1) (1,1,1) (1,1,1) (1,1,1) √ 1100 (−2,0,0) (−3,0,0) (−1− 2,0,0) (−1,0,0) 2 √ 1010 (0,0,−2) (0,0,−3) (0,0,−1− 2) (0,0,−1) 2 √ 1001 (0,2,0) (0,3,0) (0,1+ 2,0) (0,1,0) 2 √ 0110 (0,−2,0) (0,−3,0) (0,−1− 2,0) (0,−1,0) 2 √ 0101 (0,0,2) (0,0,3) (0,0,1+ 2) (0,0,1) 2 √ 0011 (2,0,0) (3,0,0) (1+ 2,0,0) (1,0,0) 2 1110 (−1,−1,−1) (−1,−1,−1) (−1,−1,−1) (−1,−1,−1) 3 3 3 1101 (−1,1,1) (−1,1,1) (−1,1,1) (−1,1,1) 3 3 3 1011 (1,1,−1) (1,1,−1) (1,1,−1) (1,1,−1) 3 3 3 0111 (1,−1,1) (1,−1,1) (1,−1,1) (1,−1,1) 3 3 3 1111 (0,0,0) (0,0,0) (0,0,0) (0,0,0) Symmetry2017,9,204 8of22 Figure5.(a)TetrahedronfortheL -bitstrings;(b)octahedronfortheL -bitstringsand(c)tetrahedron 1 2 fortheL -bitstringsinsidetheAristotelianrhombicdodecahedronforB . 3 4 B 3.2. TheAristotelianTetrakisHexahedronfor 4 We now turn to the Aristotelian tetrakis hexahedron (THH) (or simply: tetrahexahedron) for B ,whichisshowninFigure6a. ThisdiagramwasfirstusedbySauriol[85]inhisresearchonthe 4 logicalgeometryofthepropositionalconnectivesandwaslateralsoadoptedbyLuzeauxetal.[25] andPellissier[64]intheirresearchonmodallogic. (Althoughtheselatterauthors[25,64]erroneously calltheirdiagrama‘tetraicosahedron’;cf.infra.) Thetetrakishexahedronhas14vertices,36edges and24faces;beingaconvexpolyhedron,itsatisfiestheEulerformulaV−E+F =2. Notethatthe numberofvertices(V =14)againcorrespondsexactlytothenumberofcontingentbitstringsofB 4 (cf.supra). ThetetrakishexahedronisagainaCatalansolid;itisdualtothetruncatedoctahedron, whichisitselfagainanArchimedeansolid;thesymmetrygroupofboththesepolyhedraisagainthe octahedralgroupO [80–82]. h Figure 6. (a) Aristotelian tetrakis hexahedron for B ; (b) The tetrakis hexahedron as a cube with 4 pyramidsputontoeachofitssixfaces. Just like the rhombic dodecahedron, the tetrakis hexahedron can be seen as the result of putting a square pyramid onto each of the faces of a cube; cf. Figure 6b (this was also noted by Sauriol[85],pp.384–385). Ifthecubehasedgelength(cid:96),thepyramidshaveheight (cid:96). Inthesepyramids, 4 thebaseisasquareofedgelength(cid:96)(viz.oneofthefacesofthecube),andthelateralfacesareisosceles triangles(withoneedgeoflength(cid:96)andtwooflength 3(cid:96)). Comparingtherhombicdodecahedronin 4 Figure3aandthetetrakishexahedroninFigure6a,wefindthatthesetwoAristoteliandiagramsare verysimilartoeachother. Thecrucialdifferenceconcernstheheightofthesixpyramids,whichis (cid:96) muchsmallerinthelatterthanintheformer( inthepyramidsofthetetrakishexahedronversus 4 Symmetry2017,9,204 9of22 (cid:96) inthoseoftherhombicdodecahedron). Consequently,inthetetrakishexahedron,thepyramids’ 2 lateralfacesareatanangleofstrictlylessthan45◦ tothebase,andhencethelateralfacesofadjacent pyramidsnolongerlieinthesameplane,andthusnolongerformasingle,rhombicface. Takingthe rhombicdodecahedronasourstartingpoint, eachofthe12rhombicfacesisthusbrokenintotwo triangularfaces,whichexplainswhythetetrakishexahedronhastwiceasmanyfacesastherhombic dodecahedron(24versus12)andhas12additionaledges(36versus24). WeagainfixasetofstandardcoordinatesfortheverticesoftheAristoteliantetrakishexahedron. Thecoordinatefunctionc : B →R3showninTable1attheendofthissectionmapsthebitstrings THH 4 B of onto the vertices of the Aristotelian tetrakis hexahedron. This coordinate function reveals 4 the strong similarities between the Aristotelian rhombic dodecahedron and tetrakis hexahedron. Firstofall,notethatweagainhavec (1111) = c (0000) = (0,0,0)andc (¬b) = −c (b) THH THH THH THH B for all bitstrings b, i.e., the top and bottom elements of coincide with each other in the center 4 oftheAristoteliantetrakishexahedron,andlogicalnegationisvisualizedbymeansofcentralsymmetry. Furthermore,theL -andL -bitstringsareonceagainmappedontothevertices(±1,±1,±1)ofthe 1 3 cube. The only difference between c and c concerns the coordinates for the L -bitstrings, RDH THH 2 i.e.,theheightofthesixpyramidsthatareputontopofthecube’sfaces. Sincethecubehasedge length two, the pyramids that yield the tetrakis hexahedron have height 1 ×2 = 1; for example, 4 2 thetopfaceofthecubeliesintheplaney =1;theapexofthepyramidthatisputontopofthisface, liesat(0,1+ 1,0) = (0,3,0). Ingeneral,itholdsthatc (b) = 3c (b)forallb ∈ L ,whichreflects 2 2 THH 4 RDH 2 thefactthatinthetetrakishexahedron,thepyramids’apicesareclosertothecube’sfacesthanwasthe caseintherhombicdodecahedron. B 3.3. TheAristotelianTetraicosahedronfor 4 B Thenextpolyhedrontobeconsidered,istheAristoteliantetraicosahedron(TIH)for ,whichis 4 showninFigure7a,andwhichwasfirstusedbyMoretti[60,65]inhisresearchonn-oppositiontheory andmodallogic. (Asfarasweknow,thispolyhedronisnotsystematicallystudiedinthegeometrical literatureonpolyhedra;theterm‘tetraicosahedron’onlyseemstooccurinthelogic-orientedresearch ofMoretti,PellissierandLuzeauxetal. Furthermore,thistermhasnotbeenusedentirelyconsistently in the literature; for example, Pellissier [64] and Luzeaux et al. [25] draw a tetrakis hexahedron, butcallita‘tetraicosahedron’,whileMoretti[68],conversely,drawsatetraicosahedron,butcallsit a‘tetrahexahedron’.) Justlikethetetrakishexahedron,thetetraicosahedronhas14vertices,36edges and 24 faces; even though this polyhedron is not convex, it thus still satisfies the Euler formula V−E+F =2. Thetetraicosahedrondoesnotbelongtoanyofthewell-studiedfamiliesofpolyhedra (cf.supra). Itiseasytosee,however,thatitssymmetrygroupis,onceagain,theoctahedralgroupO . h Furthermore,thenumberofvertices(V =14)againcorrespondsexactlytothenumberofcontingent B bitstringsof (cf.supra). 4 Onceagain,thetetraicosahedroncanbeseenastheresultofputtingasquarepyramidontoeach ofthefacesofacube;cf.Figure7b. However,theideaisnowthatthelateralfacesofthesepyramids shouldbeequilateral(ratherthanmerelyisosceles)triangles. Itiseasytoshowthatifthecubehas edgelength(cid:96),thiscanbeachievedbyusingpyramidsofheight √(cid:96) . Insuchpyramids,thebaseisa 2 squareofedgelength(cid:96),andthelateralfacesareequilateraltrianglesofedgelength(cid:96);thesepyramids areJohnsonsolids[86]. ComparingtherhombicdodecahedroninFigure3aandthetetraicosahedron inFigure7a,wefindthatthesetwoAristoteliandiagramsare,onceagain,verysimilartoeachother. The crucial difference concerns the height of the six pyramids, which is much greater in the latter than in the former (√(cid:96) in the pyramids of the tetraicosahedron versus (cid:96) in those of the rhombic 2 2 dodecahedron). Consequently,inthetetraicosahedron,thepyramids’lateralfacesareatanangleof strictlymorethan45◦ tothebase,andhencethelateralfacesofadjacentpyramidsnolongerlieinthe sameplane,andthusnolongerformasingle,rhombicface. Takingtherhombicdodecahedronasour startingpoint,eachofthe12rhombicfacesisthusbrokenintotwotriangularfaces,whichexplains whythetetraicosahedronhastwiceasmanyfacesastherhombicdodecahedron(24versus12),andhas Symmetry2017,9,204 10of22 12additionaledges(36versus24). Finally,anotherconsequenceofthepyramids’greaterheightsis thatthetetraicosahedronisnotconvex;forexample,thebitstrings1100and1001areontwoverticesof thetetraicosahedron,butthelinesegmentbetweenthesetwoverticesclearlyliesentirelyoutsidethis polyhedron;cf.Figure7a. Figure7.(a)AristoteliantetraicosahedronforB ;(b)Thetetraicosahedronasacubewithpyramids 4 putontoeachofitssixfaces. ItwillagainbeconvenienttofixasetofstandardcoordinatesfortheverticesoftheAristotelian tetraicosahedron. Thecoordinatefunctionc : B →R3showninTable1attheendofthissection TIH 4 B mapsthebitstringsof ontotheverticesoftheAristoteliantetraicosahedron.Thiscoordinatefunction 4 revealsthestrongsimilaritiesbetweentheAristotelianrhombicdodecahedronandtetraicosahedron. First of all, note that we again have c (1111) = c (0000) = (0,0,0) and c (¬b) = −c (b) TIH TIH TIH TIH B for all bitstrings b, i.e., the top and bottom elements of coincide with each other in the center 4 oftheAristoteliantetraicosahedron,andlogicalnegationisvisualizedbymeansofcentralsymmetry. Furthermore,theL -andL -bitstringsareonceagainmappedontothevertices(±1,±1,±1)ofthe 1 3 cube. The only difference between c and c concerns the coordinates for the L -bitstrings, RDH TIH 2 i.e.,theheightofthesixpyramidsthatareputontopofthecube’sfaces. Sincethecubehasedge √ length two, the pyramids that yield the tetraicosahedron have height √1 ×2 = 2; for example, 2 thetopfaceofthecubeliesintheplaney =1;theapexofthepyramidthatisputontopofthisface, √ √ liesat(0,1+ 2,0). Ingeneral,itholdsthatc (b) = 1+ 2c (b)forallb ∈ L ,whichreflectsthe TIH 2 RDH 2 factthatinthetetraicosahedron,thepyramids’apicesarefartherremovedfromthecube’sfacesthan wasthecaseintherhombicdodecahedron. B 3.4. TheAristotelianNestedTetrahedronfor 4 B The final polyhedron to be considered, is the Aristotelian nested tetrahedron (NTH) for , 4 asshowninFigure8. Ciucci,DuboisandPradehaverecentlymadeuseofthisAristoteliandiagramin theircomparativeresearchonthelogicalgeometryofroughsettheory,formalconceptanalysisand possibilitytheory[38,40]. Furthermore,recenthistoricalresearchhasshownthatapredecessorofthis diagramwasalreadyusedbythe19th-centurylogician(andnovelist)LewisCarroll[68,87].

Description:
artificial intelligence, in order to study (connections between) various knowledge representation formalisms. diagrams, by appealing to the congruence principle from cognitive research on diagram design. Coxeter, H.S.M. Regular Polytopes; Dover Publications: New York, NY, USA, 1973. 79.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.