ebook img

Logic, Mathematics, and Computer Science: Modern Foundations with Practical Applications PDF

399 Pages·2015·0.73 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Logic, Mathematics, and Computer Science: Modern Foundations with Practical Applications

Yves Nievergelt Logic, Mathematics, and Computer Science Modern Foundations with Practical Applications Second Edition Logic, Mathematics, and Computer Science Yves Nievergelt Logic, Mathematics, and Computer Science Modern Foundations with Practical Applications Second Edition 123 YvesNievergelt DepartmentofMathematics EasternWashingtonUniversity Cheney,WA,USA CoverartexcerptedfromtriadictruthtablesfromCharlesSandersPeirce’sLogicNotebook. ISBN978-1-4939-3222-1 ISBN978-1-4939-3223-8 (eBook) DOI10.1007/978-1-4939-3223-8 LibraryofCongressControlNumber:2015949237 MathematicsSubjectClassification(2010):Primary03-01;Secondary:68-01,91-01 SpringerNewYorkHeidelbergDordrechtLondon ©SpringerScience+BusinessMediaNewYork2002,2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerScience+BusinessMediaLLCNewYorkispartofSpringerScience+BusinessMedia(www. springer.com) Preface This second edition, entitled Logic, Mathematics, and Computer Science: Modern Foundations with Practical Applications, has been adapted from Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography, © 2002 by Birkhäuser, from which Chapters 1–5 have been retained but extensively revised.Chapters6and7havebeenadded. This text discusses the foundations where logic, mathematics, and computer sciencebegin.Theintendedreadershipconsistsofundergraduatestudentsmajoring inmathematicsorcomputersciencewhomustlearnsuchfoundationseitherfortheir own interest or for further studies. For a motivated reader, there are no technical prerequisites:youneednotknowanytechnicalsubjecttostartreadingthistext. Although the text does not focus on the history and philosophy of the founda- tions, the material cites copious references to the literature, where the reader may find additional historical context. Consulting such references is neither suggested nornecessarytostudythetheoryortoworkontheexercises,butindividualcitations document the material by original sources, and all the citations together provide a guidetothevariationsandchronologicaldevelopmentsoflogic,mathematics,and computerscience.Forexample,Chapter1tracestheoriginofTruthtablestoCharles Sanders Peirce’s unpublished 1909 Logic Notebook on philosophy and points out theirapplicationsoveronehalfofacenturylatertothedesignofcomputersforuse onEarthandonboardtheApollolunarspacecraft. Along informal arguments, this text also shows the corresponding purely sym- bolic manipulations of formulae, because they clarify the reasoning [11] and can reveal hitherto hidden logical properties, such as the mutual independence of different patterns of reasoning, or the impossibility of some proofs within some logics: Asforalgebra[oflogic],theveryideaoftheartisthatitpresentsformulaewhichcanbe manipulated,andthatbyobservingtheeffectsofsuchmanipulationwefindpropertiesnot tobeotherwisediscerned(CharlesSandersPeirce[104,p.182]). If professionals are unable to learn some topics by any means other than the pure manipulationofsymbols,thenitwouldseemunfairtoclaimthatalllearningmustbe intuitiveandhidefromstudentssuchpurelymanipulativebutsuccessfulmethods. v vi Preface The selection of topics also reflects major accomplishments from the twentieth century: the foundation of all of mathematics, and later computer science, as well ascomputer-assistedproofsofmathematicaltheorems,onaformallogicbasedon only a few axioms, transformation rules, and postulates for set theory [47,50,54, 105,139].Also,whilenotwritteninformallogic,Nobel-Prizewinningapplications tothesocialsciencesrelyonthesamefoundations,asshowninChapter7. To introduce the foundations of logic, the provability theorem in Chapter 1 provides an algorithm to design proofs in propositional logic. Chapter 1 also explains the concept of undecidability with multi-valued (“fuzzy”) logic and presents a proof of unprovability. Chapter 2 introduces logical quantifiers. Aworkingknowledgeoflogicalquantifiersiscrucialforthestudyofbasicconcepts in modern mathematical analysis and topology, such as the uniform convergence of a sequence of equicontinuous functions. Continuing with the foundations of mathematics, Chapter 3 presents a version of the Zermelo–Fraenkel set theory. At thejunctureofmathematicsandcomputerscience,Chapter4developstheconcepts ofdefinitionandproofbyinduction.Chapter4thenusesinductionwithsettheory todefinetheintegersandrationalnumbersandderivetheassociative,commutative, and distributive laws, as well as algorithms, for their arithmetics. To give readers someideaoftopicsatanintermediatelevel,Chapter5showsthatinawell-formed theorysomeparadoxesdonotoccur,whileChapter6completesthefoundationsof settheorywiththeaxiomofchoice. No extragalactic asteroid has yet been found with the universal laws of logic engraved in it. Consequently, not just one logic but many different logics have beeninvented.Differentlogicsleadtodifferentmathematicsanddifferentcomputer sciences. However, the acid test for adopting a particular logic is its ability to make predictions that are born by subsequent experiments. Formal logic is thus a mathematical model of rational thought processes. In this aspect, logic, mathematics, and computer science are experimental sciences. Only one logic has passed all such tests, which is the one used throughout this text. Other logics are outlined in Chapter 1 as a pedagogical device and to show some of their shortcomings. Acknowledgments I thank Dr. Stephen P. Keeler at the Boeing Company for having corrected many errorsinthefirstedition.Newandremainingerrorsaremine.IalsothankDr.Mary Keeler for guiding me to Charles Sanders Peirce’s unpublished work on logic and philosophy. I commend the editors at Birkhäuser and Springer, in particular, Ann Kostant and Elizabeth Loew, for their hard work, patience, encouragements, and positiveattitudethroughthedevelopmentandproductionofbothtexts. Cheney,WA,USA YvesNievergelt 30June2015 Contents 1 PropositionalLogic:ProofsfromAxiomsandInferenceRules......... 1 1.1 Introduction ............................................................. 1 1.1.1 AnExampleDemonstratingtheUseofLogicin RealLife....................................................... 2 1.2 ThePurePropositionalCalculus ....................................... 4 1.2.1 Formulae,Axioms,InferenceRules,andProofs............. 5 1.3 ThePurePositiveImplicationalPropositionalCalculus .............. 9 1.3.1 ExamplesofProofsintheImplicationalCalculus........... 9 1.3.2 DerivedRules:ImplicationsSubjecttoHypotheses......... 11 1.3.3 AGuideforProofs:anImplicationalDeductionTheorem.. 14 1.3.4 Example:LawofAssertionfromtheDeductionTheorem.. 18 1.3.5 More Examples to Design Proofs of ImplicationalTheorems....................................... 21 1.3.6 AnotherGuideforProofs:SubstitutivityofEquivalences .. 23 1.3.7 MoreDerivedRulesofInference............................. 25 1.3.8 TheLawsofCommutationandofAssertion................. 27 1.3.9 ExercisesontheClassicalImplicationalCalculus........... 28 1.3.10 EquivalentImplicationalAxiomSystems.................... 29 1.3.11 ExercisesonKleene’sAxioms................................ 30 1.3.12 ExercisesonTarski’sAxioms................................. 31 1.4 ProofsbytheConverseLawofContraposition........................ 32 1.4.1 ExamplesofProofsintheFullPropositionalCalculus...... 32 1.4.2 GuidesforProofsinthePropositionalCalculus............. 34 1.4.3 ProofsbyReductioadAbsurdum ............................ 35 1.4.4 ProofsbyCases................................................ 36 1.4.5 ExercisesonFrege’sandChurch’sAxioms.................. 37 1.5 OtherConnectives....................................................... 38 1.5.1 DefinitionsofOtherConnectives............................. 38 1.5.2 ExamplesofProofsofTheoremswithConjunctions........ 38 1.5.3 ExamplesofProofsofTheoremswithEquivalences........ 41 1.5.4 ExamplesofProofsofTheoremswithDisjunctions......... 44 vii viii Contents 1.5.5 ExamplesofProofswithConjunctionsandDisjunctions... 46 1.5.6 ExercisesonOtherConnectives.............................. 47 1.6 PatternsofDeductionwithOtherConnectives........................ 48 1.6.1 ConjunctionsofImplications................................. 48 1.6.2 ProofsbyCasesorbyContradiction ......................... 53 1.6.3 ExercisesonPatternsofDeduction........................... 54 1.6.4 EquivalentClassicalAxiomSystems......................... 55 1.6.5 ExercisesonKleene’s,Rosser’s,andTarski’sAxioms...... 56 1.7 Completeness,Decidability,Independence,Provability, andSoundness........................................................... 56 1.7.1 Multi-ValuedFuzzyLogics................................... 56 1.7.2 SoundMulti-ValuedFuzzyLogics ........................... 57 1.7.3 IndependenceandUnprovability ............................. 59 1.7.4 CompleteMulti-ValuedFuzzyLogics........................ 61 1.7.5 Peirce’sLawasaDenialoftheAntecedent.................. 62 1.7.6 ExercisesonChurch’sandŁukasiewicz’s TriadicSystems................................................ 62 1.8 BooleanLogic........................................................... 63 1.8.1 TheTruthTableoftheLogicalImplication.................. 63 1.8.2 BooleanLogiconEarthandinSpace........................ 65 1.9 AutomatedTheoremProving........................................... 67 1.9.1 TheProvabilityTheorem...................................... 67 1.9.2 TheCompletenessTheorem .................................. 69 1.9.3 Example:Peirce’sLawfromtheCompletenessTheorem... 69 1.9.4 ExercisesontheDeductionTheorem ........................ 72 2 First-OrderLogic:ProofswithQuantifiers............................... 75 2.1 Introduction ............................................................. 75 2.2 ThePurePredicateCalculusofFirstOrder............................ 75 2.2.1 LogicalPredicates............................................. 75 2.2.2 Variables,Quantifiers,andFormulae......................... 77 2.2.3 ProperSubstitutionsofFreeorBoundVariables ............ 78 2.2.4 AxiomsandRulesforthePurePredicateCalculus.......... 80 2.2.5 ExercisesonQuantifiers ...................................... 82 2.2.6 ExampleswithImplicationalandPredicateCalculi......... 82 2.2.7 ExampleswithPurePropositionalandPredicateCalculi ... 86 2.2.8 OtherAxiomaticSystemsforthePurePredicateCalculus.. 87 2.2.9 ExercisesonKleene’s,Margaris’s,andRosser’sAxioms... 89 2.3 MethodsofProofforthePurePredicateCalculus .................... 90 2.3.1 SubstitutingEquivalentFormulae ............................ 90 2.3.2 DischargingHypotheses ...................................... 91 2.3.3 PrenexNormalForm.......................................... 95 2.3.4 ProofswithMorethanOneQuantifier ....................... 96 2.3.5 ExercisesontheSubstitutivityofEquivalence............... 97 Contents ix 2.4 PredicateCalculuswithOtherConnectives............................ 98 2.4.1 UniversalQuantifiersandConjunctionsorDisjunctions.... 98 2.4.2 ExistentialQuantifiersandConjunctionsorDisjunctions... 100 2.4.3 ExercisesonQuantifierswithOtherConnectives............ 101 2.5 Equality-Predicates ..................................................... 101 2.5.1 First-OrderPredicateCalculiwithanEquality-Predicate... 102 2.5.2 Simple Applied Predicate Calculi withanEquality-Predicate.................................... 103 2.5.3 OtherAxiomSystemsfortheEquality-Predicate............ 106 2.5.4 DefinedRanking-Predicates .................................. 107 2.5.5 ExercisesonEquality-Predicates............................. 107 3 SetTheory:ProofsbyDetachment,Contraposition,and Contradiction................................................................. 109 3.1 Introduction ............................................................. 109 3.2 SetsandSubsets......................................................... 110 3.2.1 EqualityandExtensionality................................... 110 3.2.2 TheEmptySet................................................. 114 3.2.3 SubsetsandSupersets......................................... 114 3.2.4 ExercisesonSetsandSubsets ................................ 118 3.3 Pairing,Power,andSeparation......................................... 119 3.3.1 Pairing ......................................................... 119 3.3.2 PowerSets..................................................... 122 3.3.3 SeparationofSets ............................................. 124 3.3.4 ExercisesonPairing,Power,andSeparationofSets ........ 126 3.4 UnionsandIntersectionsofSets ....................................... 127 3.4.1 UnionsofSets................................................. 127 3.4.2 IntersectionsofSets........................................... 132 3.4.3 UnionsandIntersectionsofSets.............................. 135 3.4.4 ExercisesonUnionsandIntersectionsofSets............... 139 3.5 CartesianProductsandRelations ...................................... 142 3.5.1 CartesianProductsofSets .................................... 142 3.5.2 CartesianProductsofUnionsandIntersections ............. 147 3.5.3 MathematicalRelationsandDirectedGraphs ............... 149 3.5.4 ExercisesonCartesianProductsofSets...................... 153 3.6 MathematicalFunctions ................................................ 154 3.6.1 MathematicalFunctions....................................... 154 3.6.2 ImagesandInverseImagesofSetsbyFunctions............ 159 3.6.3 ExercisesonMathematicalFunctions........................ 162 3.7 CompositeandInverseFunctions...................................... 164 3.7.1 CompositionsofFunctions ................................... 164 3.7.2 Injective,Surjective,Bijective,andInverseFunctions ...... 166 3.7.3 TheSetofallFunctionsfromaSettoaSet.................. 171 3.7.4 ExercisesonInjective,Surjective,andInverseFunctions... 173

Description:
This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logi
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.