ebook img

Local convergence of random graph colorings PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Local convergence of random graph colorings

LOCAL CONVERGENCE OF RANDOM GRAPH COLORINGS AMINCOJA-OGHLAN∗,CHARILAOSEFTHYMIOU∗∗ANDNORJAAFARI 5 1 ABSTRACT. LetG=G(n,m)bearandomgraphwhoseaveragedegreed=2m/nisbelowthek-colorabilitythreshold. 0 Ifwesampleak-coloringσofGuniformlyatrandom,whatcanwesayaboutthecorrelationsbetweenthecolorsassigned 2 tovertices thatarefarapart? According toaprediction fromstatistical physics, foraveragedegrees below theso-called n condensationthresholddk,cond,thecolorsassignedtofarawayvertices areasymptotically independent [Krzakalaetal.: Proc.NationalAcademyofSciences2007].Weprovethisconjectureforkexceedingacertainconstantk0.Moregenerally, a weinvestigatethejointdistributionofthek-coloringsthatσinduceslocallyonthebounded-depthneighborhoodsofany J fixednumberofvertices.Inaddition,wepointoutanimplicationonthereconstructionproblem. 6 2 MathematicsSubjectClassification:05C80(primary),05C15(secondary) ] O 1. INTRODUCTION ANDRESULTS C Let G = G(n,m) denote the random graph on the vertex set [n] = 1,...,n with precisely m edges. Unless . specified otherwise, we assume that m = m(n) = dn/2 for a fixed{number}d > 0. As usual, G(n,m) has a h property “withhighprobability”(“w.h.p.”)iflim ⌈ P[⌉G(n,m) ]=1. at A n→∞ ∈A m 1.1. Backgroundandmotivation. GoingbacktotheseminalpaperofErdo˝sandRe´nyi[20]thatfoundedthetheory ofrandomgraphs, the problemofcoloringG(n,m)remainsoneofthe longest-standingchallengesin probabilistic [ combinatorics. Overthepasthalf-century,effortshavebeendevotedtodeterminingthelikelyvalueofthechromatic 1 number χ(G(n,m)) [4, 11, 26, 28] and its concentration [6, 27, 34] as well as to algorithmic problems such as v constructingorsamplingcoloringsoftherandomgraph[3,15,16,17,22,23]. 1 0 Atantalisingfeatureoftherandomgraphcoloringproblemistheinterplaybetweenlocalandglobaleffects.Locally 3 aroundalmostanyvertextherandomgraphisbipartitew.h.p.Infact,foranyfixedaveragedegreed> 0andforany 6 fixedω the depth-ω neighborhoodof allbuto(n) verticesis justa tree w.h.p.Yetgloballythe chromaticnumberof 0 the random graph may be large. Indeed, for any number k 3 of colors there exists a sharp threshold sequence 1. d = d (n)suchthatforanyfixedε > 0,G(n,m)is≥k-colorablew.h.p.if2m/n< d (n) ε,whereas k−col k−col k−col 0 therandomgraphsfailstobek-colorablew.h.p.if2m/n > d (n)+ε[1]. Whilstthethresholdsd− arenot k−col k−col 5 knownprecisely,therearecloseupperandlowerbounds.Thebestcurrentonesread 1 : d =(2k 1)lnk 2ln2+δ liminfd (n) limsupd (n) (2k 1)lnk 1+ε , (1.1) v k,cond k k−col k−col k − − ≤ n→∞ ≤ n→∞ ≤ − − i X wherelim δ =lim ε =0[4,13,14]. Tobeprecise,thelowerboundin(1.1)isformallydefinedas k→∞ k k→∞ k r a d =inf d>0:limsupE[Z (G(n,m))1/n]<k(1 1/k)d/2 . (1.2) k,cond k − (cid:26) n→∞ (cid:27) This number, called the condensation threshold due to a connection with statistical physics [24], can be computed preciselyforkexceedingacertainconstantk [8]. Anasymptoticexpansionyieldstheexpressionin(1.1). 0 Thecontrastbetweenlocaland globaleffectswas famouslypointedoutby Erdo˝s, who producedG(n,m) as an exampleofa graphthatsimultaneouslyhasa highchromaticnumberanda highgirth[19]. Thepresentpaperaims atamorepreciseunderstandingofthiscollusionbetweenshort-rangeandlong-rangeeffects. Forinstance,doglobal effectsentail“invisible”constraintson the coloringsofthe localneighborhoodsso thatcertain “local”coloringsdo notextendtoacoloringoftheentiregraph?Andwhatcorrelationsdotypicallyexistbetweenthecolorsofverticesat alargedistance? Date:January27,2015. ∗TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFrame- workProgramme(FP/2007-2013)/ERCGrantAgreementn.278857–PTCC. ∗∗ResearchissupportedbyARCGaTech. 1 A naturalway of formalising these questionsis as follows. Let k 3 be a number of colors, fix some number ω > 0andassumethatd < d sothatG = G(n,m)isk-colorab≥lew.h.p.Moreover,pickavertexv andfixa k,cond 0 k-coloringσ ofitsdepth-ωneighborhood.Howmanywaysaretheretoextendσ toak-coloringoftheentiregraph, 0 0 andhowdoesthisnumberdependonσ ? Additionally,ifwepickavertexv thatis“faraway”fromv andifwepick 0 1 0 anotherk-coloringσ of the depth-ω neighborhoodof v , is there a k-coloringσ of G that simultaneouslyextends 1 1 bothσ andσ ? Ifso,howmanysuchσexist,andhowdoesthisdependonσ ,σ ? 0 1 0 1 The main result of this paper (Theorem1.1 below) providesa very neat and accurate answer to these questions. Itshowsthatw.h.p.all“local”k-coloringsσ extendtoasymptoticallythesamenumberofk-coloringsoftheentire 0 graph. Letuswrite (G)forthesetofallk-coloringsofagraphGandletZ (G) = (G) bethenumberofk- k k k S |S | colorings.Moreover,let∂ω(G,v )bethedepth-ωneighborhoodofavertexv inG(i.e.,thesubgraphofGobtained 0 0 bydeletingallverticesatdistancegreaterthanωfromv ). Thenw.h.p.anyk-coloringσ of∂ω(G,v )has 0 0 0 (1+o(1))Z (G) k Z (∂ω(G,v )) k 0 extensionstoak-coloringofG. Moreover,ifwepickanothervertexv atrandomandfixsomek-coloringσ ofthe 1 1 depth-ωneighborhoodofv ,thenw.h.p.thenumberofjointextensionsofσ ,σ is 1 0 1 (1+o(1))Z (G) k . Z (∂ω(G,v ))Z (∂ω(G,v )) k 0 k 1 Inotherwords,ifwechooseak-coloringσuniformlyatrandom,thenthedistributionofthek-coloringthatσinduces on the subgraph ∂ω(G,v ) ∂ω(G,v ), which is a forest w.h.p., is asymptotically uniform. The same statement 0 1 ∪ extendstoanyfixednumberv ,...,v ofvertices. 0 l 1.2. Results. The appropriate formalism for describing the limiting behavior of the local structure of the random graphis the conceptof localweak convergence[5, 9]. The concreteinstalmentof the formalismthatwe employis reminiscentofthatusedin[10,32].(Corollary1.2belowprovidesastatementthatisequivalenttothemainresultbut thatavoidstheformalismoflocalweakconvergence.) Let G be the set of all locally finite connected graphs whose vertex set is a countable subset of R. Further, let G be the set of all triples (G,v ,σ) such that G G, σ : V(G) [k] is a k-coloring of G and v V(G) is k 0 0 ∈ → ∈ a distinguished vertex that we call the root. We refer to (G,v ,σ) as a rooted k-colored graph. If (G′,v′,σ′) is 0 0 anotherrootedk-coloredgraph,wecall(G,v ,σ)and(G′,v′,σ′)isomorphic((G,v ,σ)=(G′,v′,σ′))ifthereisan 0 0 0 ∼ 0 isomorphismϕ : G G′ suchthatϕ(v ) = ϕ(v′),σ = σ′ ϕandsuchthatforanyv,w V(G)suchthatv < w → 0 0 ◦ ∈ we haveϕ(v) < ϕ(w). Thus,ϕ preservestheroot,the coloringandtheorderofthe vertices(whicharereals). Let [G,v ,σ]betheisomorphismclassof(G,v ,σ)andlet bethesetofallisomorphismclassesofrootedk-colored 0 0 k G graphs. Foranintegerω 0andΓ welet∂ωΓdenotetheisomorphismclassoftherootedk-coloredgraphobtained k ≥ ∈G fromΓbydeletingallverticeswhosedistancefromtherootexceedsω. ThenanyΓ,ω 0giverisetoafunction ≥ 0,1 , Γ′ 1 ∂ωΓ′ =∂ωΓ . (1.3) k G →{ } 7→ { } Weendow withthecoarsesttopologythatmakesallofthesefunctionscontinuous.Further,forl 1weequip l Gk ≥ Gk withthecorrespondingproducttopology.Additionally,theset ( l)ofprobabilitymeasureson l carriestheweak P Gk Gk topology,asdoestheset 2( l)ofallprobabilitymeasureson ( l). Thespaces l, ( l), 2( l)arePolish[5]. P Gk P Gk Gk P Gk P Gk ForΓ wedenotebyδ ( )theDiracmeasurethatputsmassoneonΓ. k Γ k Let∈GGbeafinitek-colorab∈lePgrGaphwhosevertexsetV(G)iscontainedinRandletv ,...,v V(G). Thenwe 1 l ∈ candefinea probabilitymeasureon l asfollows. LettingG v denotetheconnectedcomponentofv V(G)and Gk k ∈ σ vtherestrictionofσ :V(G) [k]toG v,wedefine k → k l 1 λ(G,v ,...,v)= δ ( l). (1.4) 1 l Z (G) [Gkvi,vi,σkvi] ∈P Gk k σ∈XSk(G)Oi=1 Theidea is thatλ capturesthejointempiricaldistributionof coloringsinducedbya randomcoloringof G G,v1,...,vl “locally”inthevicinityofthe“roots”v ,...,v . Further,let 1 l 1 λl = E[δ G χ(G(n,m)) k] 2( l). n,m,k nl λ( (n,m),v1,...,vl)| ≤ ∈P Gk v1,..X.,vl∈[n] 2 Thismeasurecapturesthetypicaldistributionofthelocalcoloringsinarandomgraphwithlrandomlychosenroots. Wearegoingtodeterminethelimitofλl asn . Tocharacterisethislimit,letT∗(d)bne,ma,(kpossib→lyi∞nfinite)randomGalton-Watsontreerootedatavertexv∗ with 0 offspringdistributionPo(d). WeembedT∗(d)intoRbyindependentlymappingeachvertextoauniformlyrandom point in [0,1]; with probabilityone, all vertices get mapped to distinct points. Let T(d) G signify the resulting randomtree and let v denote its root. For a numberω > 0 we let ∂ωT(d) denotethe (fi∈nite) rootedtree obtained 0 fromT(d)byremovingallverticesatadistancegreaterthanωfromv . Moreover,forl 1letT1(d),...,Tl(d)be 0 lindependentcopiesofT(d)andset ≥ ϑld,k[ω]=E(cid:20)δNi∈[l]λ(cid:16)∂ωTi(d)(cid:17)(cid:21)∈P2(Gkl), where (1.5) 1 λ(cid:0)∂ωTi(d)(cid:1)= Zk(∂ωTi(d))σ∈Sk(X∂ωTi(d))δ[∂ωTi(d),v0,σ] ∈P(Gkl) (cf.(1.4)). Thesequence(ϑl [ω]) converges(seeAppendixA)andwelet d,k ω≥1 ϑl = lim ϑl [ω]. d,k d,k ω→∞ Combinatorially,ϑl correspondsto samplingl copiesofthe Galton-Watsontree T(d) independently. Thesetrees d,k are colored by assigning a random color to each of the l roots independently and proceeding down each tree by independentlychoosingacolorforeachvertexfromthek 1colorsleftunoccupiedbytheparent. − Theorem1.1. Thereisanumberk >0suchthatforallk k ,d<d ,l >0wehavelim λl =ϑl . 0 ≥ 0 k,cond n→∞ n,m,k d,k Fixnumbersω 1, l 1, choosea randomgraphG = G(n,m) forsomelargeenoughn andchoosevertices v ,...,v uniform≥lyandi≥ndependentlyatrandom. Thenthedepth-ω neighborhoods∂ω(G,v ),...,∂ω(G,v )are 1 l 1 l pairwisedisjointandtheunion = ∂ω(G,v ) ∂ω(G,v )isaforestw.h.p.Moreover,thedistancebetween 1 l anytwotreesin isΩ(lnn)w.Fh.p.GiventhatG∪is··k·-∪colorable,letσbearandomk-coloringofG. Thenσinduces F a k-coloring of the forest . Theorem 1.1 implies that w.h.p. the distribution of the induced coloring is at a total F variationdistanceo(1)fromtheuniformdistributiononthesetofallk-coloringsof . Formally,letuswriteµ for k,G F theprobabilitydistributionon[k]V(G)definedby µ (σ)=1 σ (G) Z (G)−1 (σ [k]V(G)), k,G k k { ∈S } ∈ i.e.,theuniformdistributiononthesetofk-coloringsofthegraphG. Moreover,forU V(G)letµ denotethe k,G|U ⊂ projectionofµ onto[k]U,i.e., k,G µ (σ )=µ σ [k]V : u U :σ(u)=σ (u) (σ [k]U). k,G|U 0 k,G 0 0 ∈ ∀ ∈ ∈ IfH isasubgraphofG,thenweju(cid:0)s(cid:8)twriteµ insteadofµ .(cid:9)L(cid:1)et denotethetotalvariationnorm. k,G|H k,G|V(H) k·kTV Corollary1.2. Thereisaconstantk >0suchthatforanyk k ,d<d ,l 1,ω 0wehave 0 0 k,cond ≥ ≥ ≥ 1 lim E µ G G G µ G G =0. n→∞nl k, |∂ω( ,v1)∪···∪∂ω( ,vl)− k,∂ω( ,v1)∪···∪∂ω( ,vl) TV v1,..X.,vl∈[n] (cid:13) (cid:13) (cid:13) (cid:13) Sincew.h.p.thepairwisedistance(cid:13)oflrandomlychosenverticesv ,...,v inGisΩ(lnn)(cid:13),weobservethatw.h.p. 1 l µ G G = µ G . k,∂ω( ,v1)∪···∪∂ω( ,vl) k,∂ω( ,vi) iO∈[l] With very little work it can be verified that Corollary 1.2 is actually equivalent to Theorem 1.1. Setting ω = 0 in Corollary1.2yieldsthefollowingstatement,whichisofinterestinitsownright. Corollary1.3. Thereisanumberk >0suchthatforallk k ,d<d andanyintegerl >0wehave 0 0 k,cond ≥ 1 lim E µ G µ G =0. (1.6) n→∞nl (cid:13) k, |{v1,...,vl}− k, |{vi}(cid:13) v1,..X.,vl∈[n] (cid:13)(cid:13) iO∈[l] (cid:13)(cid:13)TV (cid:13) (cid:13) (cid:13) 3 (cid:13) (cid:13) (cid:13) Bythesymmetryofthecolors,µ G isjusttheuniformdistributionon[k] foreveryvertexv. Hence,Corol- k, |{v} lary1.3statesthatford<d w.h.p.intherandomgraphGforrandomlychosenverticesv ,...,v thefollowing k,cond 1 l istrue:ifwechooseak-coloringσofGatrandom,then(σ(v ),...,σ(v )) [k]l isasymptoticallyuniformlydis- 1 l ∈ tributed. PriorresultsofMontanariandGershenfeld[21]andofMontanari,RestrepoandTetali[33]implythat(1.6) holdsford<2(k 1)ln(k 1),aboutanadditivelnkbelowd . k,cond − − The above results and their proofs are inspired by ideas from statistical physics. More specifically, physicists have developeda non-rigorousbut analytic technique, the so-called “cavity method”[29], which has led to various conjecturesontherandomgraphcoloringproblem. Theseincludea predictionastotheprecisevalueofd for k,cond anyk 3[37]aswellasaconjectureasto theprecisevalueofthek-colorabilitythresholdd [25]. While the k−col ≥ latterformulaiscomplicated,asymptoticallyweexpectthatd = (2k 1)lnk 1+ε ,wherelim ε = k−col k k→∞ k − − 0. According to this conjecture, the upper bound in (1.1) is asymptotically tight and d is strictly greater than k−col d . Furthermore,accordingto the physicsconsiderations(1.6) holdsfor anyk 3 and anyd < d [24]. k,cond k,cond ≥ Corollary1.3verifiesthisconjecturefork k . Bycontrast,accordingtothephysicspredictions,(1.6)doesnothold 0 ≥ ford < d < d . As(1.6)isthespecialcaseofω = 0ofTheorem1.1(resp.Corollary1.2),theconjecture k,cond k−col implies that neither of these extendto d > d . In other words, the physics picture suggeststhat Theorem1.1, k,cond Corollary1.2andCorollary1.3areoptimal,exceptthattheassumptionk k canpossiblybereplacedbyk 3. 0 ≥ ≥ 1.3. Anapplication. Supposewedrawak-coloringσ ofG atrandom. Ofcourse,thecolorsthatσ assignsto the neighborsofavertexvandthecolorofvarecorrelated(theymustbedistinct).Moregenerally,itseemsreasonableto expectthatforanyfixed“radius”ωthecolorsassignedtotheverticesatdistanceωfromvandthecolorofvitselfwill typicallybecorrelated. Butwill these correlationspersistasω ? Thisis the“reconstructionproblem”,which → ∞ hasreceivedconsiderableattentioninthecontextofrandomconstraintsatisfactionproblemsingeneralandinrandom graphcoloringinparticular[24,33,35]. ToillustratetheuseofTheorem1.1wewillshowhowitreadilyimpliesthe resultonthereconstructionproblemforrandomgraphcoloringfrom[33]. Toformallystatetheproblem,assumethatGisafinitek-colorablegraph. Forv V(G)andasubset = ∈ ∅ 6 R ⊂ (G)letµ ( )betheprobabilitydistributionon[k]definedby k k,G|v S ·|U 1 µ (i )= 1 σ(v)=i , k,G|v |R { } |R|σ∈R X i.e.,thedistributionofthecolorofvinarandomcoloringσ . Forv V(G),ω 1andσ (G)let 0 k ∈R ∈ ≥ ∈S (v,ω,σ )= σ (G): u V(G) ∂ω−1(G,v):σ(u)=σ (u) . k,G 0 k 0 R ∈S ∀ ∈ \ Thus, k,G(v,ω,σ0)containsallk-co(cid:8)loringsthatcoincidewith σ0 onverticeswhosedistance(cid:9)fromv isatleastω. R Moreover,let 1 1 1 bias (v,ω,σ )= µ (i (v,ω,σ )) , bias (v,ω)= bias (v,ω,σ ). k,G 0 2 k,G|v |Rk,G 0 − k k,G Z (G) k,G 0 iX∈[k](cid:12)(cid:12) (cid:12)(cid:12) k σ0∈XSk(G) Clearly, for symmetry reaso(cid:12)(cid:12)ns, if we draw a k-coloring σ(cid:12)(cid:12) k(G) uniformly at random, then σ(v) is uniformly distributed over [k]. What bias (v,ω,σ ) measures is ho∈w mSuch conditioningon the event σ (v,ω,σ ) k,G 0 k,G 0 ∈ R biasesthe colorofv. Accordingly,bias (v,ω) measuresthebiasinducedbya random“boundarycondition”σ . k,G 0 Wesaythatnon-reconstructionoccursinG(n,m)if 1 lim lim E[bias G (v,ω)]=0. ω→∞n→∞n k, (n,m) vX∈[n] Otherwise,reconstructionoccurs.Analogously,recallingthatT(d)istheGalton-Watsontreerootedatv ,wesaythat 0 treenon-reconstructionoccursatdiflimω→∞E[biask,∂ωT(d)(v0,ω)]=0.Otherwise,treereconstructionoccurs. Corollary1.4. Thereisanumberk >0suchthatforallk k andd<d thefollowingistrue. 0 0 k,cond ≥ ReconstructionoccursinG(n,m) treereconstructionoccursatd. (1.7) ⇔ Montanari,RestrepoandTetali[33]proved(1.7)ford<2(k 1)ln(k 1),aboutanadditivelnkbelowd . k,cond − − Thisgapcouldbepluggedbyinvokingrecentresultsonthegeometryofthesetofk-colorings[7,13,31]. However, weshallseethatCorollary1.4isactuallyanimmediateconsequenceofTheorem1.1. 4 The point of Corollary 1.4 is that it reducesthe reconstructionproblemon a combinatoriallyextremely intricate object, namely the random graph G(n,m), to the same problem on a much simpler structure, namely the Galton- Watson tree T(d). Thatsaid, the reconstructionproblemonT(d) is farfromtrivial. The bestcurrentboundsshow that there exists a sequence (δ ) 0 such that non-reconstruction holds in T(d) if d < (1 δ )klnk while k k k → − reconstructionoccursifd>(1+δ )klnk[18]. k 1.4. Techniquesandoutline. Noneoftheargumentsinthepresentpaperareparticularlydifficult. Itisratherthata combinationofseveralrelativelysimpleingredientsprovesremarkablypowerful. Thestartingpointoftheproofisa recentresult[7]ontheconcentrationofthenumberZ (G(n,m))ofk-coloringsofG(n,m). Thisresultentailsavery k preciseconnectionbetweenafairlysimpleprobabilitydistribution,theso-called“plantedmodel”,andtheexperiment of sampling a random coloring of a random graph, thereby extending the “planting trick” from [2]. However, this planting argumentis not powerful enough to establish Theorem 1.1 (cf. also the discussion in [10]). Therefore, in the presentpaperthe keyidea isto use theinformationaboutZ (G(n,m)) tointroducean enhancedvariantof the k planting trick. More specifically, in Section 3 we will establish a connection between the experiment of sampling a random pair of coloringsof G(n,m) and another, much simpler probability distribution that we call the planted replicamodel.Weexpectthatthisideawillfindfutureuses. Apart from the concentration of Z (G(n,m)), this connection also hinges on a study of the “overlap” of two k randomlychosencoloringsofG(n,m). Theoverlapwasstudiedinpriorworkonreconstruction[21,33]inthecase thatd < 2(k 1)ln(k 1)basedonconsiderationsfromthesecondmomentargumentofAchlioptasandNaor[4] − − thatgavethe bestlowerboundonthe k-colorabilitythresholdatthe time. To extendthe studyofthe overlapto the wholeranged (0,d ), we crucially harnessinsightsfromthe improvedsecondmomentargumentfrom[14] k,cond ∈ andtherigorousderivationofthecondensationthreshold[8]. AswewillseeinSection4,thestudyoftheplantedreplicamodelallowsustodrawconclusionsastothetypical “local” structure of pairs of random colorings of G(n,m). To turn these insights into a proof of Theorem 1.1, in Section5we extendanelegantargumentfrom[21], whichwasusedtheretoestablishtheasymptoticindependence of the colors assigned to a bounded number of randomly chosen individualvertices (reminiscent of (1.6)) for d < 2(k 1)ln(k 1). − − ThebottomlineisthatthestrategybehindtheproofofTheorem1.1israthergeneric. Itprobablyextendstoother problemsofa similarnature. A naturalclasstothinkofarethebinaryproblemsstudiedin[33]. Anothercandidate mightbethehardcoremodel,whichwasstudiedin[10]byasomewhatdifferentapproach. 2. PRELIMINARIES 2.1. Notation. Forafiniteorcountableset wedenoteby ( )thesetofallprobabilitydistributionson ,which X P X X weidentifywiththesetofallmapsp : [0,1]suchthat p(x) = 1. Furthermore,ifN > 0isaninteger, X → x∈X then ( ) is the set of all p ( ) such that Np(x) is an integer for every x . With the conventionthat N P X ∈ P X P ∈ X 0ln0=0,wedenotetheentropyofp ( )by ∈P X H(p)= p(x)lnp(x). − x∈X X LetGbe a k-colorablegraph. By σk,G,σk,G,σk,G,... (G) we denoteindependentuniformsamplesfrom (G). WhereG,kareapparentfromthecont1ext,w2eomitth∈esSukperscript.Moreover,ifX : (G) R,wewrite k k S S → 1 X(σ) = X(σ). h iG,k Z (G) k σ∈XSk(G) Moregenerally,ifX : (G)l R,then k S → 1 X(σ ,...,σ ) = X(σ ,...,σ). h 1 l iG,k Z (G)l 1 l k σ1,...,Xσl∈Sk(G) WeomitthesubscriptGand/orkwhereitisapparentfromthecontext. Thus,thesymbol referstotheaverageoverrandomlychosenk-coloringsofafixedgraphG. Bycontrast, h·iG,k thestandardnotationE[ ],P[ ]willbeusedtoindictatethattheexpectation/probabilityistakenoverthechoiceof · · therandomgraphG(n,m). Unlessspecifiedotherwise,weusethestandardO-notationtorefertothelimitn . → ∞ Throughoutthepaper,wetacitlyassumethatnissufficientlylargeforourvariousestimatestohold. 5 By a rootedgraphwe mean a graphGtogetherwith a distinguishedvertexv, the root. The vertexset is always assumedtobeasubsetofR. Ifω 0isaninteger,then∂ω(G,v)signifiesthesubgraphofGobtainedbyremoving ≥ allverticesatdistancegreaterthanωfromv(includingthoseverticesofGthatarenotreachablefromv),rootedatv. Anisomorphismbetweentworootedgraphs(G,v),(G′,v′)isanisomorphismG G′oftheunderlyinggraphsthat → mapsvtov′ andthatpreservestheorderofthevertices(whichiswhyweinsistthattheybereals). 2.2. Thefirstmoment. ThepresentworkbuildsuponresultsonthefirsttwomomentsofZ (G(n,m)). k Lemma2.1. Foranyd>0,E[Z (G)]=Θ(kn(1 1/k)m). k − AlthoughLemma2.1isfolklore,webrieflycommentonhowtheexpressioncomesabout.Forσ :[n] [k]let → k σ−1(i) (σ)= | | (2.1) F 2 i=1(cid:18) (cid:19) X bethenumberofedgesofthecompletegraphthataremonochromaticunderσ. Then n (σ) n P[σ (G)]= 2 −F 2 . (2.2) k ∈S m m (cid:18)(cid:0) (cid:1) (cid:19)(cid:30)(cid:18)(cid:0) (cid:1)(cid:19) By convexity, we have (σ) 1 n for all σ. In combination with (2.2) and the linearity of expectation, this implies that E[Z (G(n,Fm))] =≥ Ok(k2n(1 1/k)m). Conversely, there are Ω(kn) maps σ : [n] [k] such that k n/k σ−1(i) √nforalli,and(cid:0) (cid:1)(σ)/−n =1/k+O(1/n)forallsuchσ. ThisimpliesE[Z (G→)]=Ω(kn(1 1/k)m−).|Thefol|lo≤wingresultshowsthFatZ (G2)istightlyconcentratedaboutitsexpectationfordk<d . − (cid:12) (cid:12) k(cid:0) (cid:1) k,cond (cid:12) (cid:12) Theorem2.2([7]). Thereisk >0suchthatforallk k andalld<d wehave 0 0 k,cond ≥ lim lim P[ lnZ (G) lnE[Z (G)] ω]=1. k k ω→∞n→∞ | − |≤ Forα = (α ,...,α ) ([k]) we letZ (G) bethe numberof k-coloringsσ of G suchthat σ−1(i) = α n 1 k n α i ∈ P | | for all i [k]. Conversely, for a map σ : [n] [k] let α(σ) = n−1(σ−1(i)) ([k]). Additionally, let i∈[k] n ∈ → ∈ P α¯ =k−11=(1/k,...,1/k). Lemma2.3([7,Lemma3.1]). Letϕ(α)=H(α)+ dln 1 α 2 . Then 2 −k k2 E[Z (G)]=O(exp(nϕ(α))) (cid:16) (cid:17) uniformlyforallα ([k]), α n ∈P E[Z (G)]=Θ(n(1−k)/2)exp(nϕ(α)) uniformlyforallα ([k])suchthat α α¯ k−3. α ∈Pn k − k2 ≤ 2.3. Thesecondmoment. Definetheoverlapofσ,τ :[n] [k]asthek kmatrixρ(σ,τ)withentries → × 1 ρ (σ,τ)= σ−1(i) τ−1(j) . ij n ∩ Thenthenumberofedgesofthecompletegraphthatare(cid:12)monochromaticu(cid:12)ndereitherσorτ equals (cid:12) (cid:12) nρ (σ,τ) ij (σ,τ)= (σ)+ (τ) . F F F − 2 i,Xj∈[k](cid:18) (cid:19) Fori [k]letρ signifytheithrowofthematrixρ,andforj [k]letρ denotethejthcolumn. Anelementary i· ·j ∈ ∈ applicationofinclusion/exclusionyields(cf.[7,Fact5.4]) m (n)−F(σ,τ) P[σ,τ (G)]= 2 m =O 1 ( ρ (σ,τ) 2+ ρ (σ,τ) 2)+ ρ(σ,τ) 2 . (2.3) ∈Sk (n)  − k i· k2 k ·i k2 k k2  (cid:0) m2 (cid:1) iX∈[k]    We canview ρ(σ,τ) asa(cid:0)distr(cid:1)ibutionon[k] [k], i.e., ρ(σ,τ) ([k]2). Letρ¯be theuniformdistributionon n × ∈ P [k]2. Moreover,forρ ([k]2)letZ⊗(G)bethenumberofpairsσ ,σ (G)withoverlapρ. Finally,let ∈Pn ρ 1 2 ∈Sk (ω)= ρ ([k]2): i [k]: ρ α¯ , ρ α¯ ω/n , and (2.4) Rn,k ∈Pn ∀ ∈ k i· − k2 k ·i− k2 ≤ n d p o f(ρ)=H(ρ)+ ln(1 2/k+ ρ 2). (2.5) 2 − k k2 6 Lemma2.4([4]). Assumethatω =ω(n) butω =o(n). Forallk 3,d>0wehave →∞ ≥ E[Z⊗(G)]=O(n(1−k2)/2)exp(nf(ρ)) uniformlyforallρ (ω)s.t. ρ ρ¯ k−3, ρ ∈Rn,k k − k∞ ≤ E[Z⊗(G)]=O(exp(nf(ρ))) uniformlyforallρ (ω). ρ ∈Rn,k Moreover,ifd<2(k 1)ln(k 1),thenforanyη >0thereexistsδ >0suchthat − − f(ρ)<f(ρ¯) δ forallρ (ω)suchthat ρ ρ¯ >η. (2.6) − ∈Rn,k k − k2 Thebound(2.6)appliesford<2(k 1)ln(k 1),aboutlnkbelowd .Tobridgethegap,letκ=1 ln20k/k k,cond − − − andcallρ ([k]2)separableifkρ (0.51,κ)foralli,j [k]. Moreover,σ (G)isseparableifρ(σ,τ)is n ij k separablef∈orPallτ (G). Otherwise6∈,wecallσ inseparable∈. Further,ρiss-sta∈blSeiftherearepreciselysentries k ∈ S suchthatkρ κ. ij ≥ Lemma2.5([14]). Thereisk suchthatforallk >k andall2(k 1)ln(k 1) d 2klnkthefollowingistrue. 0 0 − − ≤ ≤ (1) LetZ˜ (G)= σ (G):σisinseparable . ThenE[Z˜ (G)] exp( Ω(n))E[Z (G)]. k k k k |{ ∈S }| ≤ − (2) Let1 s k 1. Thenf(ρ)<f(ρ¯) Ω(1)uniformlyforalls-stableρ. ≤ ≤ − − (3) Foranyη >0thereisδ >0suchthatsup f(ρ):ρis0-stableand ρ ρ¯ >η <f(ρ¯) δ. { k − k2 } − Lemma2.5omitsthek-stablecase. Todealwithit,weintroduce (G,σ)= τ (G):ρ(σ,τ)isk-stable . (2.7) k C { ∈S } Lemma2.6([8]). Thereexistk andω =ω(n) suchthatforallk k ,2(k 1)ln(k 1) d<d we 0 0 k,cond →∞ ≥ − − ≤ have nl→im∞P h|C(G,σ)|iG,k ≤ω−1E[Zk(G)] =1. h i 2.4. Atailbound. Finally,weneedthefollowinginequality. Lemma 2.7 ([36]). Let X ,...,X be independent random variables with values in a finite set Λ. Assume that 1 N f :ΛN Risafunction,thatΓ ΛN isaneventandthatc,c′ >0arenumberssuchthatthefollowingistrue. → ⊂ Ifx,x′ ΛN aresuchthatthereisk [N]suchthatx =x′ foralli=k,then ∈ ∈ i i 6 c ifx Γ, (2.8) f(x) f(x′) ∈ | − |≤ c′ ifx Γ. (cid:26) 6∈ Thenforanyγ (0,1]andanyt>0wehave ∈ t2 2N P[f(X ,...,X ) E[f(X ,...,X )] >t] 2exp + P[(X ,...,X ) Γ]. | 1 N − 1 N | ≤ −2N(c+γ(c′ c))2 γ 1 N 6∈ (cid:18) − (cid:19) 3. THE PLANTEDREPLICA MODEL Throughoutthissectionweassumethatk k forsomelargeenoughconstantk andthatd<d . 0 0 k,cond ≥ InthissectionweintroducethekeytoolfortheproofofTheorem1.1,theplantedreplicamodel.Thisistheprobability distributionπpr ontriples(G,σ ,σ )suchthatGisagraphon[n]withmedgesandσ ,σ (G)inducedby n,m,k 1 2 1 2 ∈Sk thefollowingexperiment. PR1: Sampletwomapsσˆ ,σˆ :[n] [k]independentlyanduniformlyatrandomsubjecttotheconditionthat 1 2 (σˆ ,σˆ ) n m. → F 1 2 ≤ 2 − PR2: ChooseagraphGˆ on[n]withpreciselymedgesuniformlyatrandom,subjecttotheconditionthatboth (cid:0) (cid:1) σˆ ,σˆ areproperk-colorings. 1 2 Wedefine πpr (G,σ ,σ )=P (Gˆ,σˆ ,σˆ )=(G,σ ,σ ) . n,m,k 1 2 1 2 1 2 Clearly,theplantedreplicamodelisquitetamesothatithshouldbeeasytobringtheiknowntechniquesfromthetheory of randomgraphsto bear. Indeed,the conditioningin PR1 is harmlessbecause E[ (σˆ ,σˆ )] (2/k 1/k2) n F 1 2 ∼ − 2 whilem = O(n). Hence,bytheChernoffboundwehave (σˆ ,σˆ ) n mw.h.p.Moreover,PR2justmeans F 1 2 ≤ 2 − (cid:0) (cid:1) 7 (cid:0) (cid:1) thatwe draw m randomedgesoutof the n (σˆ ,σˆ ) edgesof the complete graphthatare bichromaticunder bothσˆ ,σˆ . Inparticular,wehavetheexpli2cit−foFrmul1a 2 1 2 (cid:0) (cid:1) 1 n (τ ,τ ) −1 πpr (G,σ ,σ )= 2 −F 1 2 . n,m,k 1 2 (τ ,τ ) [k]n [k]n : (τ ,τ ) n m m 1 2 ∈ × F 1 2 ≤ 2 − τ1,τ2:[n]→[k],XF(τ1,τ2)≤(n2)−m(cid:18)(cid:0) (cid:1) (cid:19) (cid:12)(cid:8) (cid:0) (cid:1) (cid:9)(cid:12) The purpose of the(cid:12) planted replica model is to get a handle on ano(cid:12)ther experiment, which at first glance seems far less amenable. The random replica model πrr is a probability distribution on triples (G,σ ,σ ) such that n,m,k 1 2 σ ,σ (G)aswell. Itisinducedbythefollowingexperiment. 1 2 k ∈S RR1: ChoosearandomgraphG=G(n,m)subjecttotheconditionthatGisk-colorable. RR2: Sampletwocoloringsσ ,σ ofGuniformlyandindependently. 1 2 Thus,therandomreplicamodelisdefinedbytheformula n −1 πrr (G,σ ,σ )=P[(G,σ ,σ )=(G,σ ,σ )]= 2 P[χ(G) k]Z (G)2 . (3.1) n,m,k 1 2 1 2 1 2 m ≤ k (cid:20)(cid:18)(cid:0) (cid:1)(cid:19) (cid:21) Sinceweassumethatd<d ,Gisk-colorablew.h.p.Hence,theconditioninginRR1isinnocent.Butthisisfar k,cond fromtrueofthe experimentdescribedin RR2. For instance, we havenoideaas tohowonemightimplementRR2 constructivelyfordanywhereneard . Infact, thebestcurrentalgorithmsforfindingasinglek-coloringofG, k,cond letalonearandompair,stopworkingfordegreesdaboutafactoroftwobelowd (cf.[2]). k,cond Yetthemainresultofthissectionshowsthatford < d ,the“difficult”randomreplicamodelcanbestudied k,cond bymeansofthe“simple”plantedreplicamodel.Moreprecisely,recallthatasequence(µ ) ofprobabilitymeasures n n iscontiguouswithrespecttoanothersequence(ν ) ifµ ,ν aredefinedonthesamegroundsetforallnandiffor n n n n anysequence( ) ofeventssuchthatlim ν ( )=0wehavelim µ ( )=0. n n n→∞ n n n→∞ n n A A A Proposition3.1. Ifd<d ,thenπrr iscontiguouswithrespecttoπpr . k,cond n,m,k n,m,k The rest of this section is devoted to the proof of Proposition 3.1. A key step is to study the distribution of the overlapoftworandomk-coloringsσ ,σ ofG,whosedefinitionwerecallfromSection2.3. 1 2 Lemma3.2. Assumethatd<dk,cond. ThenE[hkρ(σ1,σ2)−ρ¯k2iG]=o(1). In words, Lemma 3.2 asserts that the expectation over the choice of the random graph G (the outer E) of the averageℓ -distanceoftheoverlapoftworandomlychosenk-coloringsofGfromρ¯goesto0asn . Toprove 2 → ∞ this statement the following intermediate step is required; we recall the α( ) notation from Section 2.2. The d < · 2(k 1)ln(k 1)caseofLemma3.2waspreviouslyprovedin[33]bywayofthesecondmomentanalysisfrom[4]. − − Asitturnsout,theregime2(k 1)ln(k 1) < d < d requiresasomewhatmoresophisticatedargument. In k,cond − − any case, for the sake of completeness we give a full prove of Lemma 3.2, including the d < 2(k 1)ln(k 1) − − (which adds merely three lines to the argument). Similarly, in [33] the followingclaim was established in the case d<2(k 1)ln(k 1). − − Claim3.3. Supposethatd<d andthatω =ω(n)issuchthatlim ω(n)= butω =o(n). Thenw.h.p. k,cond n→∞ Gissuchthat ∞ 1 α(σ) α¯ > ω/n exp( Ω(ω)). k − k2 G ≤ − Proof. WecombineTheorem2.2Dwitnhastandard“firstmpomenot”Eestimatesimilartotheproofof[33,Lemma5.4].The entropyfunctionα ([k]) H(α) = k α lnα isconcaveandattainsitsglobalmaximumatα¯. Infact, ∈ P 7→ − i=1 i i theHessianofα H(α)satisfiesD2H(α) 2id. Moreover,sinceα α 2 isconvex,α dln(1 α 2)is 7→ (cid:22)P− 7→k k2 7→ 2 −k k2 concaveandattainsisglobalmaximumatα¯ aswell. Hence,lettingϕdenotethefunctionfromLemma2.3,wefind D2ϕ(α) 2id. Therefore,weobtainfromLemma2.3that (cid:22)− O(1) if α α¯ >1/lnn, E[Z (G)] exp(n(ϕ(α¯) α α¯ 2)) k − k2 (3.2) α ≤ −k − k2 ·(O(n(1−k)/2) otherwise. Further,letting Z′(G)= Z (G) α α∈Pn([k]):kXα−α¯k2>√ω/n 8 andtreatingthecasesω ln2nandω ln2nseparetely,weobtainfrom(3.2)that ≤ ≥ E[Z′(G)] exp( Ω(ω))exp(n(ϕ(α¯)). (3.3) ≤ − SinceLemma2.1showsthatE[Z (G)]=Θ(kn(1 1/k)m)=exp(nϕ(α¯)),(3.3)yieldsE[Z′(G)]=exp( Ω(ω))E[Z (G)]. k k − − Hence,byMarkov’sinequality P[Z′(G) exp( Ω(ω))E[Z (G)]] 1 exp( Ω(ω)). (3.4) k ≤ − ≥ − − Finally,since α(σ) α¯ > ω/n =Z′(G)/Z (G)andbecauseZ (G) E[Z ]/ωw.h.p.byTheorem2.2, k − k2 G k k ≥ k theassertionfDollowsfrom(3.4).p E (cid:3) ProofofLemma3.2. Webound Λ= kρ(σ1,σ2)−ρ¯k2 =Zk(G)2hkρ(σ1,σ2)−ρ¯k2iG G σ1,σ2X∈Sk( ) byasumofthreedifferentterms. First,letting,say,ω(n)=lnn,weset Λ = 1 α(σ ) α¯ > ω/n =Z (G)2 α(σ) α¯ > ω/n . 1 k 1 − k2 k k − k2 G G σ1,σ2X∈Sk( ) n p o D p E Todefinetheothertwo,let ′(G)bethesetofallσ (G)suchthat α(σ) α¯ ω/n. Letη >0beasmall Sk ∈Sk k − k2 ≤ butn-independentnumberandlet p Λ = 1 ρ(σ ,σ ) ρ¯ η ρ(σ ,σ ) ρ¯ , Λ = 1 ρ(σ ,σ ) ρ¯ >η . 2 {k 1 2 − k2 ≤ }k 1 2 − k2 3 {k 1 2 − k2 } σ1,σ2X∈Sk′(G) σ1,σ2X∈Sk′(G) Since ρ(σ ,σ ) ρ¯ 2forallσ ,σ ,wehave k 1 2 − k2 ≤ 1 2 Λ 4(Λ +Λ )+Λ . (3.5) 1 2 3 ≤ Hence,weneedtoboundΛ ,Λ ,Λ . WithrespecttoΛ ,Claim3.3impliesthat 1 2 3 1 P Λ exp( Ω(√n))Z (G)2 =1 o(1). (3.6) 1 k ≤ − − To estimate Λ2, we let f denotethe f(cid:2)unctionfromLemma2.4. Ob(cid:3)servethatDf(ρ¯) = 0, becauseρ¯maximisesthe entropyandminimisestheℓ -norm.Further,astraightforwardcalculationrevealsthatforanyi,j,i′,j′ [k], (i,j)= 2 ∈ 6 (i′,j′), ∂2f(ρ) = 1 + d 2dρ2ij , ∂2f(ρ) = 2dρijρi′j′ . ∂ρ2ij −ρij 1−2/k+kρk22 − (1−2/k+kρk22)2 ∂ρij∂ρi′j′ −(1−2/k+kρk22)2 Consequenctly,choosing,say,η <k−4,ensuresthattheHessiansatisfies D2f(ρ) 2id forallρsuchthat ρ ρ¯ 2 η. (3.7) (cid:22)− k − k2 ≤ Therefore,Lemma2.4yields E[Λ ] ρ ρ¯ E[Z⊗(G)] 2 ≤ k − k2 ρ ρ∈RXn,k(η) O(n(1−k2)/2)exp(nf(ρ¯)) ρ ρ¯ exp(n(f(ρ) f(ρ¯))) ≤ k − k2 − ρ∈RXn,k(η) O(n(1−k2)/2)exp(nf(ρ¯)) ρ ρ¯ exp( nk−2 ρ ρ¯ 2) [by(3.7)]. (3.8) ≤ k − k2 − k − k ρ∈RXn,k(η) Further,sinceρ =1 ρ foranyρ (η),substitutingx=√nρin(3.8)yields kk − (i,j)6=(k,k) ij ∈Rn,k E[Λ ] O(n(1P−k2)/2)exp(nf(ρ¯)) kxk2 exp( k−2 x 2)dx=O(n−1/2)exp(nf(ρ¯)). (3.9) 2 ≤ ZRk2−1 √n − k k2 Sincef(ρ¯)=2lnk+dln(1 1/k),Lemma2.1yields − exp(nf(ρ¯)) O(E[Z (G)]2). (3.10) k ≤ 9 Therefore,(3.9)entailsthat E[Λ ] O(n−1/2)E[Z (G)]2. (3.11) 2 k ≤ To bound Λ , we consider two separate cases. The first case is that d 2(k 1)ln(k 1). Then Lemma 2.4 3 ≤ − − and(3.10)yield E[Λ ] exp(nf(ρ¯) Ω(n)) exp( Ω(n))E[Z (G)]2. (3.12) 3 k ≤ − ≤ − Thesecondcaseisthat2(k 1)ln(k 1) d<d . Weintroduce k,cond − − ≤ Λ = 1 σ failstobeseparable , 31 1 { } σ1,σ2X∈Sk′(G) Λ = 1 ρ(σ ,σ )iss-stableforsome1 s k , 32 1 2 { ≤ ≤ } σ1,σ2X∈Sk′(G) Λ = 1 ρ(σ ,σ )is0-stableand ρ(σ ,σ ) ρ¯ >η , 33 { 1 2 k 1 2 − k2 } σX1,σ2 Λ = 1 ρ(σ ,σ )isk-stable , 34 1 2 { } σ1,σ2X∈Sk′(G) sothat Λ Λ +Λ +Λ +Λ . (3.13) 3 31 32 33 34 ≤ BythefirstpartofLemma2.5andMarkov’sinequality, P[Λ exp( Ω(n))Z (G)E[Z (G)]]=1 o(1). (3.14) 31 k k ≤ − − Further,combiningLemma2.4withthesecondpartofLemma2.5,weobtain P[Λ exp(nf(ρ¯) Ω(n))]=1 o(1). (3.15) 32 ≤ − − Addionally,Lemma2.4andthethirdpartofLemma2.5yield P[Λ exp(nf(ρ¯) Ω(n))]=1 o(1). (3.16) 33 ≤ − − Moreover,Lemma2.6entailsthat P[Λ exp( Ω(n))Z (G)E[Z (G)]]=1 o(1). (3.17) 34 k k ≤ − − Finally,combining(3.14)–(3.17)with(3.10)and(3.13)andusingMarkov’sinequalityoncemore,weobtain P Λ exp( Ω(n))E[Z (G)]2 =1 o(1). (3.18) 3 k ≤ − − Insummary,combining(3.5),(3.6(cid:2)),(3.11),(3.12)and(3.18)and(cid:3)setting,say,ω =ω(n)=lnlnn,wefindthat P Λ ω/nE[Z (G)]2 =1 o(1). (3.19) k ≤ − Sfrionmce(Λ3.1=9)Z.k(G)2hkρ(σ1,σ2)−ρ¯k2iGh andpasZk(G)≥E[Zki(G)]/ωw.h.p.byTheorem2.2,theassertionfollow(cid:3)s Lemma3.2putsusinapositiontoproveProposition3.1byextendingtheargumentthatwasusedto“plant”single k-coloringsin[7,Section2]tothecurrentsettingof“planting”pairsofk-colorings. ProofofProposition3.1. Assume for contradiction that ( ′ ) is a sequence of events such that for some fixed An n≥1 numberε>0wehave lim πpr [ ′ ]=0 while limsupπrr [ ′ ]>2ε. (3.20) n→∞ n,m,k An n→∞ n,m,k An Letω(n) = lnln1/πpr [ ′ ]. Thenω = ω(n) . Let bethe setof allpairs(σ ,σ ) ofmaps[n] [k] n,m,k An → ∞ Bn 1 2 → suchthat ρ(σ ,σ ) ρ¯ ω/nanddefine k 1 2 − k2 ≤ p An ={(G,σ1,σ2)∈A′n :(σ1,σ2)∈Bn}. ThenLemma3.2and(3.20)implythat lim πpr [ ]=0 while limsupπrr [ ]>ε. (3.21) n→∞ n,m,k An n→∞ n,m,k An 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.