ebook img

Linker Strategies in Solid-Phase Organic Synthesis PDF

682 Pages·13.221 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linker Strategies in Solid-Phase Organic Synthesis

Linker Strategies In Solid-Phase Organic Synthesis Linker Strategies in Solid-Phase Organic Synthesis Edited by Peter Scott © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-51116-9 Linker Strategies In Solid-Phase Organic Synthesis Edited by PETER J. H. SCOTT University of Michigan, Ann Arbor, USA A John Wiley and Sons, Ltd., Publication Thiseditionfirstpublished2009 (cid:2)c 2009JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyforpermissiontoreusethecopyrightmaterial inthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthe priorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesandproductnamesusedinthisbook aretradenames,servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductor vendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothesubjectmattercovered. Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceis required,theservicesofacompetentprofessionalshouldbesought. Thepublisherandtheauthormakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitablefor everysituation.Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformationprovidedinthe packageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhisworkasacitationand/ora potentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisherendorsestheinformationtheorganizationorWebsitemay provideorrecommendationsitmaymake.Further,readersshouldbeawarethatInternetWebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyanypromotionalstatementsforthis work.Neitherthepublishernortheauthorshallbeliableforanydamagesarisingherefrom. LibraryofCongressCataloging-in-PublicationData Scott,PeterJ.H. Linkerstrategiesinsolid-phaseorganicsynthesis/PeterJ.HScott. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-51116-9 1. Solid-phasesynthesis. I. Title. QD262.S362009 547(cid:3).2−dc22 2009030808 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-51116-9 Typesetin10/12ptTimesbyLaserwordsPrivateLimited,Chennai,India PrintedandboundintheUnitedKingdombyAntonyRoweLtd,Chippenham,Wiltshire Contents Foreword xv Preface xix ListofContributors xxi AbouttheEditor xxiii Abbreviations xxv I INTRODUCTION 1 1 General Overview 3 Scott L. Dax 1.1 Introduction, background and pivotal discoveries 3 1.2 Fundamentals of conducting solid-phase organic chemistry 9 1.2.1 Apparatus 9 1.2.2 Typical solid supports 10 1.2.3 Fluorous supports 12 1.2.4 Linker strategies 12 1.2.5 Challenges 17 1.2.6 Linker groups 18 1.3 Concluding comments 20 1.4 Personal perspective and testimony: solid-phase Mannich chemistry 21 References 22 II TRADITIONAL LINKER UNITS FOR SOLID-PHASE ORGANIC SYNTHESIS 25 2 Electrophile Cleavable Linker Units 27 Michio Kurosu 2.1 Introduction 27 2.2 Resins for use with electrophilic linkers 28 2.3 Electrophile cleavable linkers 30 2.3.1 Acid labile linkers 31 2.4 Conclusion 70 References 71 3 Nucleophile Cleavable Linker Units 77 Andrea Porcheddu and Giampaolo Giacomelli 3.1 Introduction 77 vi Contents 3.2 Linker units 78 3.3 Nucleophilic labile linker units 79 3.3.1 Cleavage by saponification or basic trans-esterification 80 3.3.2 Cleavage by aminolysis 86 3.3.3 Cleavage by hydrazinolysis 101 3.3.4 Cleavage by Hydroxylamines 105 3.3.5 Cleavage by other nucleophiles 109 3.3.6 Linker cleavage by intramolecular nucleophilic reaction 119 3.4 Conclusion 129 References 130 4 Cyclative Cleavage as a Solid-Phase Strategy 135 A. Ganesan 4.1 Introduction 135 4.2 C–N bond formation 137 4.2.1 Cyclopeptides and cyclodepsipeptides 138 4.2.2 Heterocycles, five-membered ring formation 139 4.2.3 Heterocycles, six- and seven-membered ring formation 142 4.3 C–O bond formation 145 4.4 C–C bond formation 146 4.5 Conclusion 148 References 148 5 Photolabile Linker Units 151 Christian Bochet and Se´bastien Mercier 5.1 Introduction 151 5.2 Linkers based on the ortho-nitrobenzyloxy function 151 5.3 Linkers based on the ortho-nitrobenzylamino function 158 5.4 Linkers based on the α-substituted ortho-nitrobenzyl group 161 5.5 Linkers based on the ortho-nitroveratryl group 165 5.6 Linkers based on the phenacyl group 173 5.7 Linkers based on the para-methoxyphenacyl group 176 5.8 Linkers based on the benzoin group 180 5.9 Linkers based on the pivaloyl group 184 5.10 Traceless linkers 187 5.11 Other types of photolabile linker units 187 5.12 Conclusion 188 References 191 6 Safety-Catch Linker Units 195 Sylvain Lebreton and Marcel Pa´tek 6.1 Introduction 195 6.2 Activation of a carbonyl group by the inductive effect (I–) of an adjacent substituent 196 6.2.1 Kenner-type safety-catch linker 196 6.2.2 N-boc-activated safety-catch linker 197 Contents vii 6.2.3 Sulfide/sulfone safety-catch linker 198 6.2.4 Dpr(phoc) safety-catch linker 199 6.3 Activation by the mesomeric effect (M-) of the –X–Y=Z moiety adjacent to a carbonyl group 199 6.3.1 Carbonyl activation by oxidative aromatization 199 6.3.2 Carbonyl activation by indole ring formation 200 6.3.3 Benzyl/phenyl-hydrazide safety-catch linker 200 6.3.4 Dehydration activated safety-catch linker 202 6.4 Activation by the positive mesomeric effect (M+) of the –X–Y=Z moiety adjacent to a N-acyl or O-alkyl group 202 6.4.1 Benzhydryl-based safety-catch linker 202 6.4.2 Indole-based safety-catch linker 203 6.4.3 Nitrobenzyl alcohol-based safety-catch linker 204 6.5 Aromatic S Ar substitution 205 N 6.6 Fragmentation by β-elimination 207 6.7 Safety-catch linker for release in aqueous buffers 208 6.7.1 Geysen safety-catch linker 208 6.7.2 Frank safety-catch linker 210 6.7.3 Lyttle safety-catch linker 210 6.7.4 Multiple cleavable linkers 211 6.8 Photochemical activation 212 6.9 Miscellaneous safety-catch linkers 213 6.9.1 Activation by reductive aromatization 213 6.9.2 Activation via intramolecular H-bonding 214 6.9.3 Activation by formation of an alkyne-cobalt complex 215 6.9.4 Activation by oxidation of arylsulfide for pummerer rearrangement 216 6.9.5 Activation by oxidative N-benzyl deprotection 217 6.9.6 Activation by thioether alkylation 218 6.10 Conclusion 219 References 219 7 Enzyme Cleavable Linker Units 221 Mallesham Bejugam and Sabine L. Flitsch 7.1 Introduction 221 7.2 Enzyme cleavable linker units 222 7.2.1 Exo linker units 222 7.2.2 Endo linker units 225 7.3 Conclusion 237 References 237 III MULTIFUNCTIONAL LINKER UNITS FOR DIVERSITY-ORIENTED SYNTHESIS 239 8 An Introduction to Diversity-Oriented Synthesis 241 Richard J. Spandl, Gemma L. Thomas, Monica Diaz-Gavilan, Kieron M. G. O’Connell and David R. Spring 8.1 Introduction 241 viii Contents 8.2 Exploring chemical space 243 8.3 Sources of skeletally diverse small molecules 244 8.4 Enriching chemical space using DOS 244 8.5 The subjective nature of ‘Diversity’ 245 8.6 Differing strategies towards similar goals 246 8.6.1 DOS based on privileged scaffolds 246 8.6.2 DOS from simple starting materials 248 8.7 Generating skeletal diversity 248 8.7.1 Strategy 1: Pluripotent functional groups 249 8.7.2 Strategy 2: Pluripotent (densely functionalised) molecules 253 8.7.3 Strategy 3: Folding pathways 256 8.8 DOS and solid-phase organic synthesis 257 8.8.1 An overview of linkage cleavage strategies 258 8.8.2 Diversity linkers: A summary of the approaches used 259 8.9 Conclusion 260 References 260 9 T1 and T2 – Versatile Triazene Linker Groups 263 Kerstin Knepper and Robert E. Ziegert 9.1 Introduction 263 9.2 The T1 linker 264 9.2.1 The dibenzyl-type T1 resins 266 9.2.2 The piperazinyl-type T1 resins 278 9.3 The T2 linker units 282 9.3.1 The T2 Linker 282 ∗ 9.3.2 The T2 linker for synthesis 287 ∗ 9.3.3 The T2 scavenger resin 292 9.4 Miscellaneous triazene linkers 293 9.5 Conclusion 300 References 300 10 Hydrazone Linker Units 303 Ryszard Lazny 10.1 Introduction 303 10.2 Hydrazone linker units 303 10.3 Conclusion 312 References 314 11 Benzotriazole Linker Units 317 Daniel K. Whelligan 11.1 Introduction 317 11.2 Syntheses of polymer-supported benzotriazoles 318 11.2.1 Carbon–carbon tethered benzotriazoles 318 11.2.2 Ether tethered benzotriazoles 319 11.2.3 Amide tethered benzotriazoles 320 Contents ix 11.2.4 Ester tethered benzotriazoles 322 11.3 Polymer-supported benzotriazole linked reactions 322 11.3.1 Mannich-type reaction and cleavage 322 11.3.2 Enolate acylation 325 11.3.3 Urea synthesis 325 References 329 12 Diversity Cleavage Strategies from Phosphorus Linkers 331 Patrick G. Steel and Tom M. Woods 12.1 Introduction 331 12.2 Diversity cleavage through olefination reactions 332 12.2.1 Diversity cleavage through the Wittig reaction 332 12.2.2 Diversity cleavage using the Horner–Wadsworth–Emmons reaction 336 12.3 Diversity cleavage of enol phosphonates through palladium catalysed cross-coupling reactions 338 12.4 Oxidative diversity cleavage of cyanophosphoranes 339 References 340 13 Sulfur Linker Units 343 Peter J. H. Scott 13.1 Introduction 343 13.2 Sulfide linker units 344 13.2.1 Introduction 344 13.2.2 Reductive traceless cleavage 345 13.2.3 Multifunctional cleavage via nucleophilic substitution reactions 347 13.2.4 Multifunctional cleavage via elimination reactions 350 13.3 Sulfonium Linker Units 351 13.4 Sulfoxide linker units 354 13.4.1 Introduction 354 13.4.2 Traceless cleavage 355 13.4.3 Multifunctional cleavage using the pummerer rearrangment 355 13.5 Sulfone linker units 358 13.5.1 Introduction 358 13.5.2 Reductive traceless cleavage 360 13.5.3 Multifunctional cleavage via elimination reactions 362 13.5.4 Multifunctional cleavage via nucleophilic substitution reactions 370 13.6 Sulfonate ester linker units 373 13.6.1 Introduction 373 13.6.2 Alkanesulfonate ester linker units 373 13.6.3 Perfluoralkanesulfonyl (PFS) linker units 378 13.6.4 Tetrafluoroarylsulfonyl linker units 381 13.7 Sulfamate linker units 383 13.8 Thioester linker units 385 13.9 Conclusions 387 References 387 x Contents 14 Selenium- and Tellurium-Based Linker Units 391 Tracy Yuen Sze Butand Patrick H. Toy 14.1 Introduction 391 14.2 Selenium- and tellurium-based linker group reagents and their syntheses 391 14.3 Selenium-based linker group attachment methods 398 14.3.1 Electrophilic attachment at selenium 398 14.3.2 Nucleophilic attachment at selenium 398 14.3.3 Radical attachment at selenium 402 14.3.4 Attachment at other positions 402 14.4 Selenium-based linker group cleavage methods 403 14.4.1 Oxidative cleavage 403 14.4.2 Nucleophilic displacement cleavage 410 14.4.3 Homolytic cleavage 411 14.4.4 Miscellaneous cleavage methods 415 14.5 Conclusions 415 References 416 15 Linker Units Cleaved by Radical Processes: Cleavage of Carbon-Sulfur, -Selenium, -Tellurium, -Oxygen, -Nitrogen and -Carbon Linkers 419 Giuditta Guazzelli, Marc Miller and David J. Procter 15.1 Introduction 419 15.2 Linkers cleaved using tin hydride, alkyltin and silicon hydride reagents 420 15.2.1 Oxygen-based linkers 420 15.2.2 Sulfur-based linkers 421 15.2.3 Selenium-based linkers 421 15.2.4 Tellurium-based linkers 430 15.3 Linkers cleaved by oxidative electron-transfer 431 15.3.1 Ether and amine linkers cleaved by oxidative electron transfer 431 15.3.2 A homobenzylic ether linker cleaved by oxidative electron transfer 439 15.3.3 A sulfur linker cleaved by oxidative electron transfer with CAN 440 15.3.4 Safety-catch linkers cleaved by oxidative electron transfer 443 15.4 Linkers cleaved by reductive electron-transfer 447 15.4.1 N–O linkers cleaved using samarium(II) iodide 448 15.4.2 Sulfonamide linkers cleaved by reductive electron-transfer 450 15.4.3 Ether linkers cleaved using samarium(II) iodide 450 15.4.4 Alkyl and aryl sulfide/sulfone linkers cleaved by reductive electron-transfer 453 15.5 Radical processes that indirectly trigger linker cleavage 462 15.5.1 Nitro group reduction as a trigger for linker cleavage 462 15.5.2 Radical carbon–carbon bond formation as a trigger for linker cleavage 462 15.6 Conclusions 465 References 465 16 Silicon and Germanium Linker Units 467 Alan C. Spivey and Christopher M. Diaper 16.1 Introduction 467 16.2 Silicon-based linkers 468 Contents xi 16.2.1 The preparation of silyl resins 468 16.2.2 Activation of Si–H and Si–Aryl resins for substrate attachment 471 16.2.3 Silyl ether linkers 475 16.2.4 Fragmentation-based silyl linkers 479 16.2.5 Traceless/diversity silyl linkers 487 16.3 Germanium-based linkers 495 16.3.1 The preparation of germyl resins 496 16.3.2 Activation of Ge–Methyl and Ge–Aryl resins for substrate attachment 497 16.3.3 Traceless/diversity germyl linkers 498 16.4 Conclusions 500 References 501 17 Boron and Stannane Linker Units 505 Peter J. H. Scott 17.1 Introduction 505 17.2 Organostannane linker units 507 17.2.1 Introduction 507 17.2.2 Organostannane linker units 508 17.3 Organoboron linker units 511 17.3.1 Introduction 511 17.3.2 Diversity cleavage through suzuki–miyaura reactions 512 17.3.3 Alternative cleavage strategies from organoboron linkers 514 17.4 Conclusion 516 References 516 18 Bismuth Linker Units 519 Peter J. H. Scott 18.1 Introduction 519 18.2 Bismuth linker units 519 18.3 Conclusions 523 References 523 19 Transition Metal Carbonyl Linker Units 525 Susan E. Gibson and Amol A. Walke 19.1 Introduction 525 19.2 Chromium carbonyl linker units 525 19.3 Cobalt carbonyl linker units 533 19.4 Manganese carbonyl linker units 535 19.5 Conclusion 536 References 536 20 Linkers Releasing Olefins or Cycloolefins by Ring Closing Metathesis 537 Jan H. van Maarseveen 20.1 Introduction 537

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.