ebook img

Link Delay Inference in ANA Network Ebenezer Paintsil - DUO PDF

105 Pages·2008·1.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Link Delay Inference in ANA Network Ebenezer Paintsil - DUO

UNIVERSITY OF OSLO Department of Informatics Link Delay Inference in ANA Network Ebenezer Paintsil Network and System Administration Oslo University College May 28, 2008 Link Delay Inference in ANA Network Ebenezer Paintsil Network and System Administration Oslo University College May 28, 2008 Abstract Estimating quality of service (QoS) parameters such as link delay distribution from the end-to-enddelayofamulticasttreetopologyinnetworktomographycannotbeachievedwith- out multicast probing techniques or designing unicast probing packets that mimic the char- acteristics of multicast probing packets. Active probing is gradually giving way to passive measurementtechniques. WiththeemergenceofnextgenerationnetworkssuchasAutonomic NetworkArchitecture(ANA)network,whichdonotsupportactiveprobing,anewwayofthink- ingisrequiredtoprovidenetworktomographysupportforsuchnetworks. Thisthesisisabout investigating the possible solution to such problem in network tomography. Two approaches, queuemodelandadaptivelearningmodelwereimplementedtominimizetheuncertaintyinthe end-to-end delay measurements from passive data source so that we could obtain end-to-end delay measurements that exhibit the characteristics of unicast or multicast probing packets. The result shows that the adaptive learning model performs better than the queue model. In spiteofitsgoodperformanceagainstthequeuemodel,itfailstooutperformtheunicastmodel. Overall, the correlation between the adaptive learning model and multicast probing model is quite weak when the traffic intensity is low and strong when the traffic intensity is high. The adaptive model may be susceptible to low traffic. In general, this thesis is a paradigm shift from the investigation of ”deconvolution” algorithms that uncover link delay distributions to howtoestimatelinkdelaydistributionswithoutactiveprobing. Acknowlegements There are special people who are behind the success of this work and deserve my appreciationandrecognition. IacknowledgethesupportofmyadvisorProf. Demissie Aredo and co-advisor Professor Mark Burgess. Their support was very helpful to see methroughthisundertaking. IowespecialgratitudetoProfessorMarkBurgessforhis dedicationto thisworkandthepromptness withwhichall mydifficultquestions were answered. Iamalsogratefultotherestofmylecturerswhogavemethefoundationtobeable to carry out this work. I am thankful to Kyrre Begnum, Ismail Hassan and others who indiversewayshelpedtomakethisasuccess. Iacknowledgethegoodcompanyofmyfellowclassmatesfromvariouspartofthe world in this work. Your presence made me experienced the dynamics of the whole world. Iamthankfulforyoursupportandamazingfriendship,thetwoStiens,Lu,Iman, Saedar,Jeang,MariusandalltheothersespeciallyKashif. Lastly, I want to thank my family (Annabella, Sela (wife) and others ) for their amazing support. Their support for me has been unconditionally in every way and at everyturn. AlsoIthankAbraham,Lizforbeinggoodfriends. i Contents 1 Introduction 1 1.1 NetworkMonitoringInGeneral . . . . . . . . . . . . . . . . . . . . 2 1.1.1 ChallengesofMonitoring . . . . . . . . . . . . . . . . . . . . 3 1.2 MotivationandResearchQuestions . . . . . . . . . . . . . . . . . . . 5 2 BackgroundandTheory 8 2.1 BuildingblocksofANA . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 CommunicationBetweenClients . . . . . . . . . . . . . . . . 12 2.2 Autonomictheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 ANASelf-ManagementConcepts . . . . . . . . . . . . . . . . . . . . 16 2.4 ServiceOrientedArchitecture . . . . . . . . . . . . . . . . . . . . . . 17 2.5 PromiseTheoryandANA . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 NetworkTomographyMonitoringConcepts . . . . . . . . . . . . . . 21 2.7 TestingANANetwork . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 ModelandMethodology 26 3.1 ExperimentalGoal . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 TheExperimentalModelandAnalysis . . . . . . . . . . . . . . . . . 26 3.2.1 StatisticalInference . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 NetworkTomography . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 ModelAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.4 TheQueueModel . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.5 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.6 AdaptiveLearningModel . . . . . . . . . . . . . . . . . . . . 32 3.3 ExperimentalDesign . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 ExperimentalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.1 TestPlan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.2 HowtoObtainResults . . . . . . . . . . . . . . . . . . . . . 35 3.4.3 HowtoObtainTheEnd-to-endDelayofPassiveDataSource . 38 3.4.4 PerformanceMetrics . . . . . . . . . . . . . . . . . . . . . . 42 3.4.5 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ii CONTENTS 3.4.6 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4.7 L RelativeErrorNorm . . . . . . . . . . . . . . . . . . . . . 43 1 3.4.8 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.9 PossibleExperimentalError . . . . . . . . . . . . . . . . . . 44 3.4.10 TheKindofDatatoCompare . . . . . . . . . . . . . . . . . 45 4 Results 47 4.1 DescriptionofResultsandTestProcedures . . . . . . . . . . . . . . . 47 4.1.1 End-to-EndDelay . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.2 LinkDelays . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.4 L RelativeErrorNorm . . . . . . . . . . . . . . . . . . . . . 55 1 5 Discussion 57 5.1 ExperimentalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2 PerformanceEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Performanceunicast/multicastversuspassive/multicast . . . . . . . . 65 6 ConclusionandFutureWork 67 6.1 ns-2Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 iii List of Figures 2.1 figure 2.1differentviewsofANAcompartment,theredsquareblocksaretheFB,thereisonlyoneFBinthisdiagrambutinpracticetherecouldbemoreFBsinasinglecompartment. ThesolidgreenbarsarethelogicalICs. ThebottomlogicalICrepresentthechainoffunctionsorservicesprovidedbytheunderlyingsystem(OS).ThetoplogicalICrepresentthechainofservicesorfunctionalitiesprovidedbythecompartmenttotheoutsideworld. ThesolidblacklinesrepresentshephysicalICormediumthroughwhichinformationtravelswithinthecompartment. ThesolidblackdotrepresentsIDP.[1] 11 2.2 Internalresolutionofcompartmentmember[1] . . . . . . . . . . . . . . . 12 2.3 Clientcommunication[1] . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Clientcommunication[1] . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Networkmonitoring[1] . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 topologyoftheexperiment . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.1 UnicastEnd-to-EndDelayforNode4 . . . . . . . . . . . . . . . . . . . 49 4.2 PassiveEnd-to-EndDelayforNode4 . . . . . . . . . . . . . . . . . . . 50 4.3 Link1Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 Link4Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 Convergelink1and2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1 Link2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.2 Link3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3 Link5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4 Link6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.5 Link7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6 Converge3and4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.7 converge5and6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.8 converge7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.9 End-to-EndDelayNode5Unicast . . . . . . . . . . . . . . . . . . . . 78 6.10 End-to-EndDelayNode6Unicast . . . . . . . . . . . . . . . . . . . . 79 6.11 End-to-EndDelayNode7Unicast . . . . . . . . . . . . . . . . . . . . 80 6.12 End-to-EndDelayNode5Passive . . . . . . . . . . . . . . . . . . . . . 81 6.13 End-to-EndDelayNode6Passive . . . . . . . . . . . . . . . . . . . . . 82 6.14 End-to-EndDelayNode7Passive . . . . . . . . . . . . . . . . . . . . . 83 iv Acronyms ANA AutonomicNetworkArchitecture IC InformationChannel IDP InformationDispatchPoint FB FunctionalBlock cfEngine ConfigurationEngine SLA ServiceLevelAgreement TCP/IP TransmissionControlProtocol/InternetProtocol MANet MobileAdhocNetwork SNMP SimpleNetworkManagementProtocol NAT NetworkAddressTranslation ISP InternetServiceProvider ICMP InternetControlMessageProtocol MCMC MarkovchainMonteCarlo OGC OfficeofGovernmentCommerce ITIL InformationTechnologyInfrastructureLibrary TTL TimeToLive AI ArtificialIntelligent OSPF OpenShortestPathFirst Wi-Fi WirelessFidelity TCL ToolCommandLanguage v LISTOFFIGURES OTCL ObjectToolCommandLanguage I.I.D IndependentandIdenticallyDistributed vi List of Tables 3.1 howtoderivetopologymatrix . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 digitalizationtable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 end-to-enddelays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 inter-arrivaltime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 end-to-enddelayestimationwithqueuemodel . . . . . . . . . . . . . . . 40 3.6 end-to-enddelayestimationwithqueuemodel . . . . . . . . . . . . . . . 41 4.1 absolutedifferenceofvarianceforendnodes . . . . . . . . . . . . . . . . 51 4.2 Correlationtableofvariouslinkmeasurements . . . . . . . . . . . . . . . 54 4.3 Absolutedifferenceofvariancesofvariousmeasurementsfor400probes . . 55 4.4 atableofvariouslink1and2L relativenormmeasurements . . . . . . . 56 1 6.1 Correlationtableofvariousmeasurementfor1000probesmeasurements . . 72 6.2 Correlationtableofvariousfor400probesmeasurements . . . . . . . . . 73 6.3 Absolutedifferencesofvariancesvariousmeasurementsfor400probeexperiments 76 6.4 Normtableofvariousmeasurementscomputedover50probes . . . . . . . 77 vii

Description:
May 28, 2008 Link Delay Inference in ANA Network end-to-end delay of a multicast tree topology in network tomography cannot be achieved with-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.