ebook img

Linear Multivariable Control: A Geometric Approach PDF

357 Pages·1974·9.102 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Multivariable Control: A Geometric Approach

Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics, Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) Vol. 1: H. Bühlmann, H. Loeftel, E. Nievergelt, Einführung m die Vol. 30: H. Noltemeier, Sensitlvitätssnalyse bel diskreten Imearen Theorie und Praxis der Entscheidung bei Unsicherheit. 2. Auflage, Optimierungsproblemen. VI, 102 Seiten. 4°. 1970. DM 16,- IV, 125 Seiten. 4°.1969. DM 16,- Vol. 31: M. Kühlmeyer, Die nichtzentrale t-Verteilung. 11, 106 Sei Vol. 2: U. N. Bhat, A Study of the Queuemg Systems M/G/l and ten. 4°.1970. DM 16,- GI/MI. VIII, 78 pages. 4°. 1968. DM 16,- Vol. 32: F. Bartholomes und G. Hotz, Homomorphismen und Re Vol. 3: A Strauss, An Introduction to Optimal Control Theory. VI, duktionen linearer Sprachen. XII, 143 Seiten. 4°.1970. DM 16,- 153 pages. 4°. 1968. DM 16,- Vol. 33: K. Hinderer, Foundations of Non-stationary Dynamic Pro Vol. 4: Branch and Bound: Eine Einführung. 2., geänderte Auflage. gramming with Discrete Time Parameter. VI, 160 pages. 4°. 1970. Herausgegeben von F. Weinberg. VII, 174 Seiten. 4°. 1972. DM 18,- DM 16,- Vol. 5: Hyvärlnen, Information Theory for Systems Engineers. VIII, Vol. 34: H. Störmer, Seml-Markoft-Prozesse mit endlich vielen Zu 205 pages. 4°. 1968. DM 16,- ständen. TheOrie und Anwendungen. VII, 128 Seiten. 4°.1970. DM 16,- Vol. 6: H. P. Künzi, O. Müller, E. Nievergelt, Einführungskursus m die dynamische Programmierung. IV, 103 Seiten. 4°.1968. DM 16,- Vol. 35: F.Ferschl, Markovkellen. VI, 168 Seiten. 4°. 1970.DM 16, Vol. 7: W. Popp, Einführung in die Theorie der Lagerhaltung. VI, Vol. 36: M. P. J. Magill, On a General Economic Theory of MotIOn. 173 Seiten. 4°. 1968. DM 16,- VI, 95 pages. 4°.1970. DM 16,- Vol. 8: J. Teghem, J. Loris-Teghem, J. P. Lambolle, Modeles Vol. 37: H. Müller-Merbach, On Round-Oft Errors ,n Lmear Pro d'Allente M/G/l et GI/M/l a Arrivees et Services en Groupes. IV, grammmg. VI, 48 pages. 4°.1970. DM 16,- 53 pages. 4°. 1969. DM 16,- Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. Vol. 9: E. Schultze, Einführung in die mathematischen Grundlagen VIII, 338 Seiten. 4°. 1970. DM 22,- der Informationstheorie. VI, 116 Seiten. 4°.1969. DM 16,- Vol. 39: Statistische Methoden 11. Herausgegeben von E. Walter. Vol. 10: D. Hochstädter, Stochastische Lagerhaltungsmodelle. VI, IV, 155 Seiten. 4°.1970. DM 16,- 269 Seiten. 4°.1969. DM 18,- Vol. 40: H. Drygas, The Coordinate-Free Approach to Gauss Vol. 11/12: Mathematical Systems Theory and Economics. Edited Markov Estlmation. VIII, 113 pages. 4°.1970. DM 16,- by H. W. Kuhn and G. P. Szegö. VIII, IV, 486 pages. 4°. 1969. Vol. 41: U. Ueing, Zwei Lösungsmethoden für nichtkonvexe Pro DM 34,- grammierungsprobleme. VI, 92 Seiten. 4°.1971. DM 16,- Vol. 13: Heuristische Planungsmethoden. Herausgegeben von Vol. 42: A V. Balakrlshnan, Introduction to Optlmlzatlon Theory m F. Weinberg und C. A Zehnder. 11, 93 Seiten. 4°.1969. DM 16,- a Hilbert Space.IV, 153 pages. 4°.1971. DM 16,- Vol. 14: Computing Methods in Optimization Problems. Edited Vol. 43: J. AMorales, Bayeslan Full Information Structural Analy by A V. Balakrishnan. V, 191 pages. 4°. 1969. DM 16,- sis. VI, 154 pages. 4°. 1971. DM 16,- Vol. 15: Economic Models, Estimatlon and Risk Programming: Vol. 44: G. Felchtmger, Stochastische Modelle demographischer Essays in Honor of Gerhard Tintner. Edited by K. A Fox, G. V. L. Prozesse. XIII, 404 Seiten. 4°.1971. DM 28,- Narasimham and J. K. Sengupta. VIII, 461 pages.4°. 1969. DM 24, Vol. 45: K. Wendler, Hauptaustauschschrille (PrinClpal Plvoting). Vol. 16: H. P. Künzi und W. Oellll, Nichtllneare Optimierung: 11,64 Seiten. 4°.1971. DM 16,- Neuere Verfahren, Bibliographie. IV, 180 Seiten. 4°.1969. DM 16, Vol. 46: C. Boucher, Le«ons sur la theorie des automates ma Vol. 17: H. Bauer und K. Neumann, Berechnung optimaler Steue thematiques. VIII, 193 pages. 4°.1971. DM 18,- rungen, Maximumprinzip und dynamische Optimierung. VIII, 188 Seiten. 4°. 1969. DM 16,- Vol. 47: H. A. Nour Eldm, Optimierung linearer Regelsysteme mit quadratischer ZielfunktIOn. VIII, 163 Selten 4°.1971. DM 16,- Vol. 18: M. Wolft, Optimale Instandhaltungspolitiken in emfachen Systemen. V, 143 Seiten. 4°. 1970. DM 16,- Vol. 48: M. Constam, FORTRAN für Anfanger. VI, 148 Selten. 2., verbesserte Auflage. 4°.1973. DM 16,- Vol. 19: L. Hyvärinen Mathematical Modeling for Industrial Pro cesseS. VI, 122 pages. 4°. 1970. DM 16,- Vol. 49: Ch. Schneeweiß, Regelungstechmsche stochastische Optimierungsverfahren. XI, 254 Selten. 4°.1971. DM 22,- Vol. 20: G. Uebe, Optimale Fahrpläne. IX, 161 Seiten. 4°. 1970. DM 16,- Vol. 50: Unternehmensforschung Heute - ÜbersIchtsvorträge der ZÜrlcher Tagung von SVOR und DGU, September 1970. Heraus Vol. 21: Th. üebling, Graphentheorie in Planungs-und Touren gegeben von M. Beckmann. VI, 133 Seiten. 4°. 1971. DM 16,- problemen am Beispiel des städtischen StraBendienstes. IX, Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht 118 Seiten. 4°.1970. DM 16,- und W. Ne!. IV, 207 Selten. 4°.1971. DM 18,- Vol. 22: W. Eichhorn, Theorie der homogenen Produktionsfunk Vol. 52: Invariant Imbedding. Proceedlngs of the Summer Work tion. VIII, 119 Seiten. 4°. 1970. DM 16,- shop on Invariant Imbedding Held at the University of Southern Vol. 23: A Ghosal, Some Aspects of Queueing and Storage California, June-August 1970. Edited by R. E. Bellman and E. D. Systems. IV, 93 pages. 4°. 1970. DM 16,- Denman. IV, 148 pages. 4°.1971. DM 16,- Vol. 24: Feichtinger, Lernprozesse in stochastischen Automaten. Vol. 53: J. Rosenmüller, Kooperallve Spiele und Märkte. IV, 152 V, 66 Seiten. 4°.1970. DM 16,- Seiten. 4°.1971. DM 16,- Vol. 25: R. Henn und O. Opitz, Konsum-und Produktionstheorie. Vol. 54: C. C. von Weizsäcker, Steady State Cap,tal Theory. 111, I. 11, 124 Seiten. 4°. 1970. DM 16,- 102 pages. 4°. 1971. DM 16,- Vol. 26: D. Hochslädter und G-Uebe, Ökonometrische Methoden. Vol. 55: P. A V. B. Swamy, Statlsticallnference in Random Coef XII, 250 Seiten. 4°. 1970. DM 18,- ficient Regression Models. VIII, 209 pages. 4°. 1971. DM 20,- Vol. 27: I. H. Mufti, Computational Methods in Optimal Control Vol. 56: Mohamed A EI-Hodiri, Constrained Extrema.lntroductlon Problems. IV, 45 pages. 4°. 1970. DM 16,- to the Dlfterentiable Case with Economlc Applicallons. 111, 130 Vol. 28: Theoretical Approaches to Non-Numerical Problem Sol pages. 4°. 1971. DM 16,- ving. Edited by R. B. Banerji and M. D. Messrovic. VI, 466 pages. Vol. 57: E. Freund, Zeitvariable MehrgröBensysteme. VII, 160 Sei 4°.1970. DM 24,- ten. 4°.1971. DM 18,- Vol. 29: S. E. Elmaghraby, Some Network Models in Management Vol. 68: P. B. Hagelschuer, TheOrie der linearen Dekomposition. Science.III, 177 pages. 4°.1970. DM 16,- VII, 191 Seiten. 4°. 1971. DM 18,- continuaiion on page 345 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. Künzi Systems Theory 101 W. Murray Wonham Linear Multivariable Control A Geometrie Approach Springer-Verlag Berlin Heidelberg GmbH 1974 Editorial Board H. Albach . A. V. Balakrishnan . M. Beckmann (Managing Editor) . P. Dhrymes J. Green' W. Hildenbrand . W. Krelle . H. P. Künzi (Managing Editor) . K. Ritter R. Sato . H. Schelbert . P. Schönfeld Managing Editors Prof. Dr. M. Beckmann Prof. Dr. H. P. Künzi Brown University Universität Zürich Providence, RI 02912/USA 8090 Zürich/Schweiz Dr. Walter Murray Wonham Department of Electrical Engineering University ofToronto Toronto/Canada MSS lA4 Library of Congress Cataloging in Publication Data Wonham, W M 1934- Linear·mu1tivariab1e contro1. (Lecture notes in economics and mathematical systems ; 101 : Operations research) Bibliography: p. Inc1udes index. 1. Contro1 theory. 2. Algebras, Linear. I. Ti t1e. II. Series: Lecture notes in economics and mathematical systems 101. III. Series: Operations research (Berlin). QA~.3.W59 629.8'312 74-19470 AMS Subject Classifications (1970): 93B25 ISBN 978-3-662-22675-9 ISBN 978-3-662-22673-5 (eBook) DOI 10.1007/978-3-662-22673-5 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the arnount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1974 Originally published by Springer-Verlag Berlin Heidelberg New York 1974 To Anne PREFACE In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily. When it works, the method converts what is usually an intractable nonlinear problem in F, to a straightforward quasilinear one in J. By this means the first reasonably complete structure theory has been given for two con trol problems of longstanding interest: regulation, andnoninteraction. Of course, no claim is made that themethodsemployedare the best, and I leave the reader to judge whetherone sort of orgy has just been replaced by another. The book is organized as follows. Chapter 0 is a quick review of linear algebra and se lected rudiments of linear systems. It is assumed that the reader already has some working knowledge in these areas. Chapters 1-3 cover mainly standard material on controllability andobservability, although sometimes in a more 'geometrie' style than has beencustomary, and at times with greater completeness than in the literature to date. The essentially new concepts are (A, B)-invariant subspaces and (A, B)-controllability subspaces: these are in troduced in Chapters 4 and 5, along with a few primitive applications by way of motivation and illustration. The first major application - to tracking and regulation - is developed in leisurely style through Chapters 6 - 8. In Chapters 6 and 7 purelyalgebraic conditions are investigated, for output regulation alone and then for regulation along with internal stability • Chapter 8 attacks the problem of qualitative insensitivity to small parameter variations. The result is a simplified, 'generic' version of the general algebraic setup, leading finally to a structurally stable synthesis, as required in any practical implementation. A similar plan is followed in treating the second main topic, noninteracting control: first the algebraic VI development, in Cbapters 9 and 10, then generic solvability in Cbapter 11. No description is attempted of structurally stable synthesis of noninteracting controllers, as this is seen to require adaptive control, at a level of complexity beyond the domain of strict1y linear structures; but its feasibility in principle should be clear. The two closing Chapters 12 and 13 deal with quadratic optimization. While not strongly dependent on the preceding geo metrie ideas the presentation, via dynamic programming, is perhaps a little more complete tban wbat is available in this style in current textbooks. In any event the topic is standard in most courses on linear contro!. The framework throughout is state space, only casual use being made of frequency do main representations and procedures. It would be a highly worthwhile project to link the 'geometrie approach' with some of the re cent synthesis techniques based on transfer ma trices. Again for the future, intriguing possibilities exist for the use of geometrie methods in exploring other major problems of multivariable system structure: for instance, the contrasting philosophies of hierarchical and decentralized contro!. I hope the book may be seminal in these respects. A word on pedagogy. The main text is devoted to the theoretical development. To mini mize clutter, nearly all routine numerical examples have been placed among the exercises at the end of each chapter. With these as guide the reader should easily learn to translate the relatively abstract language of the theory, with its stress on the qualitative and geo metrie, into the computational language of everyday matrix arithmetic. While the book is not primarily a design manual, the computational procedures sketched out have all been programmed in APL and successfully run on systems of (modest) dynamic order 10 to 15. But much worthwhile and interesting work can and should be done on numerical aspects which are here entirely ignored. More than half this book is based on published research coauthored with several col leagues and graduate students, and it is a pleasure to re-affirm my considerable debt to them: Steve Morse, Boyd Pearson, Ellis Fabian, Bruce Francis and Omar Sebakhy. In addition I owe much to conversations with Ted Davison, Mike Sain, Harold Smith, Jakov Snyders, Shi-Ho Wang, Ming Chan, Witold Gesing, Jan Van den Kieboom and Joe Yuan. Finally, thanks are due to Professor A. V. Balakrishnan for his editorial encouragement to publish this work in the Springer-Verlag 'Lecture Notes' series; and to Mrs. Rita de Clercq Zubli for her expert preparation of the typeseript. Toronto W.M. Wonham June, 1974 CONTENTS CHAPTER O. MATHEMATICAL PRELIMINARIES 1 0.1 Notation •..••.••..•••.•••....•.•••..•.... 1 0.2 Linear Spaces •••••••••••••••••••••••.••••• 1 0.3 Subspaces •••••••••••••••••••••••••••••••• 2 0.4 Maps and Matrice s . . . • . . . . • • . • . • . • . . . . • • . . • . 5 0.5 Factor Spaces . . . . . . . . . . . . . . . . • . . . . . . . . . . • . 8 0.6 Commutative Diagrams ••••••••••••••••••••••• 10 0.7 Invariant Subspaces. Induced Maps •••••••••••••• 11 0.8 Characteristic Polynomial. Spectrum ••••••••••••• 12 0.9 Po lynomial Rings • • • • • • • • • • • • • • • • • • • • • • • • • • • 13 0.10 Rational Canonical Structure • • • • • • • • • • • • • • • • • • • 14 0.11 Jordan Decomposition. • • . • • • • • • • • • • • • • • • • • . • • 17 0.12 Dual Spaces. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 21 0.13 Inner Product Spaces • • • • • • • • • • • • • • • • • • • • • • • . 23 0.14 Hermitian and Symmetrie Maps ••••••••••••••••• 24 0.15 Well-Posedness and Genericity •••.•••••••...••. 25 0.16 Linear Systems • • • • • • • • • • • • • • • • • • • • • • • • • • • • 27 0.17 Transfer Matrices. Signal Flow Graphs ••••••••••• 29 0.18 Rouche' s Theorem . • • • • • • • • • • • • • • • • • • • • • • • • • 31 0.19 Exercises •••••••••••••••••••••••••••••••• 31 0.20 Notes and References .•••••••••••••••••.••••• 34 CHAPTER 1. INTRODUCTION TO CONTROLLABILITY • . • • • • • • • •• 35 1.1 Reachability.............................. 35 1. 2 Controllability • • • • • • • • • • • • • • • • • • • • • • . • • • • •. 36 1.3 Single-Input Systems .••••••••••••••••••••••• 38 1.4 Multi-Input Systems. • • • • • • • • • • • • • • • • • • • • • • •• 39 1.5 Controllability is Generic . . • • • • • • • • • • • • • • • • • •• 43 1. 6 Exercise s. • • • • • • • • • • • • • • • • • • • • • • • • • • . • • •. 43 1. 7 Notes and References . • • • • • • • • • • • • • • • • • • • • • •. 45 CHAPTER 2. CONTROLLABILITY, FEEDBACK AND POLE ASSIGNMENT • . • • • • • • • • • • • • • • • • • • • • • • • • • • •• 46 2. 1 Controllability and Feedback • • • • • • • • • • • • • • • • • •• 46 2.2 Pole Assignment • . • • • • • • • • • • • • • • • • • • • • • • • •. 48 2.3 Incomplete Controllability and Pole Shifting • • • • • • • •• 50 2. 4 stabilizability............................. 52 2. 5 Exercises................................ 53 2.6 Notes and References . • . • • • • • • • • • • • • • • • • • • • •• 54 CHAPTER 3. OBSERVABILITY AND DYNAMIC OBSERVERS . • . • . •• 55 3.1 Observability.............................. 55 3.2 Unobservable Subspace • • • • • • • • • • • • • • • • • • • • • •• 57 3.3 Full Order Dynamic Observer • • • • • • • • • • • • • • • • •. 58 3.4 Minimal Order Dynamic Observer ••••••••••••••. 60 3. 5 Observers and Pole Shifting. • • • • • • • • • • • • • • • • • •• 63 3. 6 Detectability.............................. 66 VIII CHAPTER 3. OBSERVABILITY AND DYNAMIC OBSERVERS (cont'd) 3. 7 Detectors and Pole Shifting • • • • • • • • • • • • • • • • • • •• 67 3.8 Pole Shifting by Dynamic Compensation • • • • • • • • • • •• 72 3.9 Observer for a Single Linear Functional ••••••••••• 80 3.10 Preservation of Observability and Detectability • • • . • .• 81 3.11 Exercises................................ 83 3.12 Notes and References • • • • • • • • • • • • • • • • • • • • • • •• 88 CHAPTER 4. DISTURBANCE DECOUPLING AND OUTPUT STABILIZATION • • • • • • • • • • • • • • • • • • • • • • • • • • .• 90 4.1 Disturbance Decoupling Problem (DDP) • • • • • • • • • • •• 90 4.2 (A, B)-Invariant Subspaces • . • • • • • • • • • • • • • • • • • •• 91 4.3 Solution of DDP • • • • • • • • • • • • • • • • • • • • • • • • • • •• 94 4.4 Output stabilization Problem (OSP) • • • • • • • • • . • • • •• 95 4.5 Exercises................................ 100 4. 6 Notes and References • • • • • • • • • • • • • • • • • • • . • . •• 104 CHAPTER 5. CONTROLLABILITY SUBSPACES ••••.•.•••••.•••• 105 5.1 Controllability Subspaces •.•.••..••••••.••..••. 105 5.2 Spectral Assignability • • • • • • • • • • • • • • • • • • • • • • •. 108 5.3 Controllability Subspace Algorithm • • . • • • . • • • • • • •• 110 5.4 Supremal Controllability Subspace. • • • • • • • . . . • • • .• 112 5.5 Disturbance Decoupling with stability ••.••••••.... 117 5.6 Controllability Indices •.••.••••••••••••••••.• 121 5.7 Exercises................................ 127 5. 8 Notes and References • . . • • . • • • • • • • • • • • • • • • • •• 132 CHAPTER 6. TRACKING AND REGULATION I: OUTPUT STABILIZATION . • • • • • • • • • • • • • • • • • • • • • • . • . •• 133 6.1 Restricted Regulator Problem (RRP) • • • • • • • • • • • • .• 134 6.2 Solvability of RRP • • • • . . • • • • • . . • • • • • • . • • . . •• 136 6.3 Extended Regulator Problem (ERP) .••••••..•.•••• 143 6.4 Example................................. 147 6.5 Concluding Remark ••.•••••••••••.•••••.•••• 150 6.6 Exercises................................ 150 6.7 Notes and References • • • . • • • • • . • • • • • • • • • • • • .• 151 CHAPTER 7. TRACKING AND REGULATION 11: INTERNAL STABILIZATION • • • • • • • • • • • • • • • • • • . • • . . • • . .• 152 7.1 Solvability of RPIS: General Considerations ..•••...• 153 7.2 Constructive Solution of RPIS: 71 = 0 • • • . • • • . • • • • •• 156 7.3 Constructive Solution of RPIS: 71 Arbitrary •• • • • • • •• 161 7.4 Application: Regulation against step Disturbances • • • •• 166 7. 5 Application: static Decoupling . • • • • • • • • • • • • • • • •. 167 7.6 Example 1: RPIS Unsolvable • • • • • • • • • • • • • • • . • •• 168 7.7 Example 2: Servo-Regulator................... 170 7.8 Exercises • • • • • • • • • • • • • • • • • • • • • • • • . • • . • • •• 175 7.9 Notes and References • • • • . . • • • • • . • • • • • • . • • • •• 183 CHAPTER 8. TRACKING AND REGULATION III: STRUCTURALLY STABLE SYNTHESIS . • • • • • • • • • • • • • . • • • • • . • • •• 184 8.1 Preliminaries............................. 184 8.2 Example 1: structural Stability ••••••••••••••••• 185 8.3 Well-Posedness and Genericity. • • • • • • • • • • • • • • • •. 187 IX CHAPI'ER 8. TRACKING AND REGULATION III: STRUCTURALLY STABLE SYNTHESIS (cont'd) 8.4 Synthesis, Case I: C = D, 'nD = 0 •••••••••••••••• 192 8.5 Synthesis, Cas~!I: KerC C KerD, 'nD Minimal •••••• 205 8.6 Synthesis, Case !II: KerC C KerD, Dual Observer •••• 210 8.7 Example 2: Ill-Posed RPIS •••••••••••••••••••• 214 8.8 Example 3: Well-Posed RPIS. Strong Synthesis •••••• 217 8.9 On Practical Synthesis •.••••••••••••••••••••• 219 8.10 The Internal Model Principle ••••••••••••••••••. 222 8.11 Exercises •••••••••••••••••••••••••••••••• 223 8.12 Notes and References •••••••••••••••••••••••• 226 CHAPTER 9. NONINTERACTING CONTROL I: BASIC PRINCIPLES •• 227 9.1 Decoupling: Systems Formulation •••••.••••••••• 227 9.2 Restricted Decoupling Problem (RDP) ••••••••••••• 229 9.3 Solution of RDP: Outputs Complete ••••••••••••.•• 231 9.4 Extended Decoupling Problem (EDP) •••••••••••••• 233 9.5 Solution of EDP •••••••••••••••••••••••••••• 235 9.6 Naive Extension •••••••••••••••••••.•••••••. 240 9.7 Example ••••••.•••••••••••••••••••••••••• 242 9.8 Partial Decoupling • . • • • • • • • • • • • • • • • • • • • • • • • . 243 9.9 Exercises •••••••••••••••••••••••••••••••• 245 9.10 Notes and References •••••••••••••••••••••••• 246 CHAPTER 10. NONINTERACTING CONTROL!I: EFFICIENT COMPENSATION • • • • • • • • • • • • • • • • • • . • • . • • • • •• 248 10.1 The Radical •••••••••••••••••••••••••••••. 248 10.2 Efficient Extension •••••••••••.•••••••••••••• 253 10.3 Efficient Decoupling ••••••••••••••••••••••••• 258 10.4 Minimal Order Compensation: d(ß) = 2 •..••••.•••• 263 10.5 Minimal Order Compensation: d( ß) = k •••••••••••• 269 10.6 Exercises ••••••••••••••••••.••••.•••••••• 274 10.7 Notes and References •••••••••••••••••••••••. 275 CHAPTER 11. NONINTERACTING CONTROL III: GENERIC SOLVABILITY ...•.......•..•..•........••.• 277 11.1 Generic Solvability of EDP ••••••••••••.•••••.. 277 11. 2 State Space Extension Bounds . • • • • • . • • . • • • • • • • • . 284 11.3 Significance of Generic Solvability ••••••••••••••• 289 11. 4 Exercises................................ 290 11. 5 Notes and References • • • • • • • • • • • • • • • • • • • • • • • • 290 CHAPTER 12. QUADRATIC OPTIMIZATION I: EXISTENCE AND UNIQUENESS .••••••••••••••••••••••••••••• 291 12.1 Quadratic Optimization ••••••••.•.•••••••••••• 291 12.2 Dynamic Programming: Heuristics •••••••••••••• 292 12.3 Dynamic Programming: Rigor.................. 294 12.4 Matrix Quadratic Equation. • • • • • • • • • . • • • . • • • • • • 298 12.5 Exercises................................ 302 12.6 Notes and References •••••••••••••••••••••••• 304 CHAPTER 13. QUADRATIC OPTIMIZATION II: DYNAMIC RESPONSE. 306 13.1 Dynamic Response: Generalities .••••••••••••••• 306 13.2 Example 1: First-Order System ••••••••••••••••• 306 13.3 Example 2: Second-Order System ••••••••••••••. 307

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.