ebook img

Linear and Quasilinear Parabolic Problems: Volume II: Function Spaces (Monographs in Mathematics) PDF

476 Pages·2019·2.177 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear and Quasilinear Parabolic Problems: Volume II: Function Spaces (Monographs in Mathematics)

Monographs in Mathematics 106 Herbert Amann Linear and Quasilinear Parabolic Problems Volume II: Function Spaces Monographs in Mathematics Vol. 106 Series Editors: Herbert Amann Universität Zürich, Zürich, Switzerland Jean-Pierre Bourguignon IHES, Bures-sur-Yvette, France William Y. C. Chen Nankai University, Tianjin, China Associate Editors: Huzihiro Araki, Kyoto University, Kyoto, Japan John Ball, Heriot-Watt University, Edinburgh, UK Franco Brezzi, Università degli Studi di Pavia, Pavia, Italy Kung Ching Chang, Peking University, Beijing, China Nigel Hitchin, University of Oxford, Oxford, UK Helmut Hofer, Courant Institute of Mathematical Sciences, New York, USA Horst Knörrer, ETH Zürich, Zürich, Switzerland Don Zagier, Max-Planck-Institute, Bonn, Germany The foundations of this outstanding book series were laid in 1944. Until the end ofthe1970s,atotalof77volumesappeared,includingworksofsuchdistinguished mathematicians asCarathéodory, NevanlinnaandShafarevich,toname afew.The series came to its name and present appearance in the 1980s. In keeping its well-established tradition, only monographs of excellent quality are published in this collection. Comprehensive, in-depth treatments of areas of current interest are presented to a readership ranging from graduate students to professional mathematicians. Concrete examples and applications both within and beyond the immediate domain of mathematics illustrate the import and consequences of the theory under discussion. More information about this series at http://www.springer.com/series/4843 Herbert Amann Linear and Quasilinear Parabolic Problems Volume II: Function Spaces Herbert Amann Institut für Mathematik UniversitätZürich Zürich,Switzerland ISSN 1017-0480 ISSN 2296-4886 (electronic) Monographsin Mathematics ISBN978-3-030-11762-7 ISBN978-3-030-11763-4 (eBook) https://doi.org/10.1007/978-3-030-11763-4 LibraryofCongressControlNumber:2019932606 MathematicsSubjectClassification(2010): 46E35,46E40,46F05 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Nil humani quin corrigi possit1 L. Naumann Systematik der Kochkunst Preface Dresden 1887 In this volume we present a systematic and detailed exposition of the theory of function spaces in an Euclidean setting. Particular emphasis is put on Besov and Besselpotentialspaceswhichformtheframeforthestudyofparabolicdifierential equations in the next volume. The presentation includes several new features which lets it stand out from other accounts. First, it consistently develops anisotropic spaces. Second, it ex- pounds the whole theory for functions and distributions taking their values in Banach spaces on which we impose only the necessary restrictions. Thus none in the case of Besov spaces, except for re(cid:176)exivity assumptions in duality theorems. Third, the theory is set forth for spaces whose elements are deflned on rectangu- lar corners of Euclidean spaces. By this we pave the way for the investigation of function spaces on Riemannian manifolds, possibly possessing corners and other singularities. This is also put on hold for the third volume. Our approach builds basically on two cornerstones: on Fourier analysis and multipliertheorems,andonextension-restrictiontechniques.Bythiswecangivea unifled presentation incorporating, in particular, Sobolev{Slobodeckii and H˜older space scales. The rather detailed study of these spaces, which are of great impor- tancefortheinvestigationofdifierentialequations,isafurthercharacteristictrait of our treatise. This volume consists of three chapters and an appendix. The flrst chapter, whichisofrathertechnicalnature,collectspreparatorymaterial.Itsuppliesaflrm basis for the main text which covers Chapters VII and VIII. The flrst one thereof contains a systematic treatment of anisotropic vector-valued function spaces on corners. In the second one we give a detailed and unifled account of trace and boundary operators. Forthereader’sconvenience,intheappendixweincludeadownscaledversion of L. Schwartz’ theory of vector-valued distributions by admitting only Banach spaces as targets. Particular weight is given on tensor products and convolutions since, in the main text, we make use of such results. It should be mentioned that, already in 2003, I had put a preliminary, slightly more comprehensive version of this appendix on my homepage. 1Thereisnothingonearththatcouldnotbeimproved. v vi Preface In essence, this volume forms a profound expansion and amelioration of my earlier lecture notes ‘Anisotropic Function Spaces and Maximal Regularity for Parabolic Problems. Part 1: Function Spaces’ [Ama09]. Besides of adding much more material, I have corrected numerous (cid:176)aws and imprecisions which observing readers have brought to my attention. Once more, I could rely on the help of Pavol Quittner, Gieri Simonett, and Christoph Walker. They read critically and carefully large parts of the flrst draft, pointed out plenty of mistakes and misprints, and suggested very advantageous changes and improvements. Sincere thanks are given to all of them for their gen- erous support. Last but not least, I could again experience the immensely valuable support of my wife Gisela who transformed countless barely readable preliminary versions and revisions into TEX flles and provided this perfect layout on hand. I am more than deeply grateful to her. Zu˜rich, January 2019 Herbert Amann Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Notations and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter VI Auxiliary Material 1 Restriction-Extension Pairs 1.1 Smooth Functions on Corners . . . . . . . . . . . . . . . . . . . . . . 4 Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Restriction-Extension Operators . . . . . . . . . . . . . . . . . . . 6 Approximation by Test Functions . . . . . . . . . . . . . . . . . . 9 1.2 Tempered Distributions on Corners . . . . . . . . . . . . . . . . . . 10 Duality Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Sequence Spaces 2.1 Duality of Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . 19 Deflnitions and Embeddings . . . . . . . . . . . . . . . . . . . . . 19 Duality Pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Weighted Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . 25 Image Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Embeddings and Duality . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Unweighted Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Weighted Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Anisotropy 3.1 Anisotropic Dilations . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Weight Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 vii viii Contents 3.2 Quasinorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Parametric Augmentations . . . . . . . . . . . . . . . . . . . . . . . 42 Augmented Quasinorms . . . . . . . . . . . . . . . . . . . . . . . . 43 Positive Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 45 Difierentiating Inverses . . . . . . . . . . . . . . . . . . . . . . . . 47 Slowly Increasing Functions . . . . . . . . . . . . . . . . . . . . . 49 3.4 Fourier Multipliers and Multiplier Spaces . . . . . . . . . . . . . . . 52 Elementary Fourier Multiplier Theorems . . . . . . . . . . . . . . 52 Fourier Multiplier Spaces . . . . . . . . . . . . . . . . . . . . . . . 54 Resolvent Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5 Multiplier Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Resolvent Estimates for Homogeneous Symbols. . . . . . . . . . . 58 Functions of Homogeneous Symbols . . . . . . . . . . . . . . . . . 59 Dunford Integral Representations . . . . . . . . . . . . . . . . . . 61 Powers and Exponentials . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 Dyadic Partitions of Unity . . . . . . . . . . . . . . . . . . . . . . . 67 Preliminary Fourier Multiplier Theorems . . . . . . . . . . . . . . 68 3.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Chapter VII Function Spaces 1 Classical Spaces 1.1 Bounded Continuous Functions . . . . . . . . . . . . . . . . . . . . . 78 Banach Spaces of Bounded Continuous Functions . . . . . . . . . 78 Vector Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 1.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Regular Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 84 Basic Deflnitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 1.3 Restrictions and Extensions . . . . . . . . . . . . . . . . . . . . . . . 86 1.4 Distributional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 90 1.5 Re(cid:176)exivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 1.6 Embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 1.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2 Besov Spaces 2.1 The Deflnition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Preliminary Estimates. . . . . . . . . . . . . . . . . . . . . . . . . 100 A Retraction-Coretraction Pair . . . . . . . . . . . . . . . . . . . 102 The Final Deflnition. . . . . . . . . . . . . . . . . . . . . . . . . . 104 2.2 Embedding Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Little Besov Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Embeddings With Varying Target Spaces . . . . . . . . . . . . . . 109 2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.4 Fourier Multiplier Theorems . . . . . . . . . . . . . . . . . . . . . . 112 Contents ix 2.5 Operators of Positive Type . . . . . . . . . . . . . . . . . . . . . . . 115 Resolvent Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 115 A Representation Theorem . . . . . . . . . . . . . . . . . . . . . . 117 Bounded Imaginary Powers . . . . . . . . . . . . . . . . . . . . . . 118 Interpolation-Extrapolation Scales . . . . . . . . . . . . . . . . . . 119 2.6 Renorming by Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 120 Equivalent Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Sandwich Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Sobolev Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 124 2.7 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Real and Complex Interpolation . . . . . . . . . . . . . . . . . . . 125 Interpolation with Difierent Target Spaces . . . . . . . . . . . . . 126 Embeddings of Intersection Spaces . . . . . . . . . . . . . . . . . . 127 Interpolation of Classical Spaces . . . . . . . . . . . . . . . . . . . 128 2.8 Besov Spaces on Corners . . . . . . . . . . . . . . . . . . . . . . . . 128 2.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3 Intrinsic Norms, Slobodeckii and H˜older Spaces 3.1 Commuting Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.2 Semigroups and Interpolation . . . . . . . . . . . . . . . . . . . . . . 137 Preliminary Estimates. . . . . . . . . . . . . . . . . . . . . . . . . 138 Renorming Intersections of Interpolation Spaces . . . . . . . . . . 141 3.3 Translation Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . 146 3.4 Renorming Besov Spaces . . . . . . . . . . . . . . . . . . . . . . . . 149 3.5 Intersection-Space Characterizations . . . . . . . . . . . . . . . . . . 151 Intersection Space Representations. . . . . . . . . . . . . . . . . . 152 Equivalent Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Nikol0ski‚‡ Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 3.6 Besov{Slobodeckii and Besov{H˜older Spaces . . . . . . . . . . . . . 155 Mixed Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Slobodeckii, H˜older, and Little H˜older Spaces . . . . . . . . . . . 157 3.7 Little H˜older Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Very Little H˜older Spaces . . . . . . . . . . . . . . . . . . . . . . . 164 3.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4 Bessel Potential Spaces 4.1 Basic Facts, Embeddings, and Real Interpolation . . . . . . . . . . . 168 4.2 A Marcinkiewicz Multiplier Theorem. . . . . . . . . . . . . . . . . . 171 4.3 Renorming by Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 173 4.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.5 Complex Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 176 A Holomorphic Semigroup . . . . . . . . . . . . . . . . . . . . . . 176 Interpolation with Difierent Target Spaces . . . . . . . . . . . . . 178

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.