ebook img

Linear Algebra and Analytic Geometry for Physical Sciences PDF

344 Pages·2018·2.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Linear Algebra and Analytic Geometry for Physical Sciences

Giovanni Landi Alessandro Zampini (cid:129) Linear Algebra and Analytic Geometry for Physical Sciences 123 GiovanniLandi Alessandro Zampini University of Trieste INFNSezione diNapoli Trieste Napoli Italy Italy ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-319-78360-4 ISBN978-3-319-78361-1 (eBook) https://doi.org/10.1007/978-3-319-78361-1 LibraryofCongressControlNumber:2018935878 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Contents 1 Vectors and Coordinate Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Applied Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 More Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Divergence, Rotor, Gradient and Laplacian. . . . . . . . . . . . . . . . 15 2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Vector Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 Linear Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 The Dimension of a Vector Space . . . . . . . . . . . . . . . . . . . . . . 33 3 Euclidean Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 Scalar Product, Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Orthonormal Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Hermitian Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Reduced Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Reduction of Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5 The Trace of a Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5 The Determinant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 A Multilinear Alternating Mapping . . . . . . . . . . . . . . . . . . . . . 69 5.2 Computing Determinants via a Reduction Procedure. . . . . . . . . 74 5.3 Invertible Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6 Systems of Linear Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1 Basic Notions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2 The Space of Solutions for Reduced Systems. . . . . . . . . . . . . . 81 6.3 The Space of Solutions for a General Linear System . . . . . . . . 84 6.4 Homogeneous Linear Systems. . . . . . . . . . . . . . . . . . . . . . . . . 94 7 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.1 Linear Transformations and Matrices . . . . . . . . . . . . . . . . . . . . 97 7.2 Basic Notions on Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 Kernel and Image of a Linear Map . . . . . . . . . . . . . . . . . . . . . 104 7.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.5 Computing the Kernel of a Linear Map . . . . . . . . . . . . . . . . . . 108 7.6 Computing the Image of a Linear Map . . . . . . . . . . . . . . . . . . 111 7.7 Injectivity and Surjectivity Criteria. . . . . . . . . . . . . . . . . . . . . . 114 7.8 Composition of Linear Maps. . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.9 Change of Basis in a Vector Space . . . . . . . . . . . . . . . . . . . . . 118 8 Dual Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.1 The Dual of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.2 The Dirac’s Bra-Ket Formalism. . . . . . . . . . . . . . . . . . . . . . . . 128 9 Endomorphisms and Diagonalization . . . . . . . . . . . . . . . . . . . . . . . 131 9.1 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.2 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.3 The Characteristic Polynomial of an Endomorphism. . . . . . . . . 138 9.4 Diagonalisation of an Endomorphism. . . . . . . . . . . . . . . . . . . . 143 9.5 The Jordan Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10 Spectral Theorems on Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . 151 10.1 Orthogonal Matrices and Isometries. . . . . . . . . . . . . . . . . . . . . 151 10.2 Self-adjoint Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.3 Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.4 The Diagonalization of Self-adjoint Endomorphisms. . . . . . . . . 163 10.5 The Diagonalization of Symmetric Matrices . . . . . . . . . . . . . . . 167 11 Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.1 Skew-Adjoint Endomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . 173 11.2 The Exponential of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.3 Rotations in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.4 Rotations in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 182 11.5 The Lie Algebra soð3Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 The Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.7 Rigid Bodies and Inertia Matrix. . . . . . . . . . . . . . . . . . . . . . . . 194 12 Spectral Theorems on Hermitian Spaces. . . . . . . . . . . . . . . . . . . . . 197 12.1 The Adjoint Endomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . 197 12.2 Spectral Theory for Normal Endomorphisms . . . . . . . . . . . . . . 203 12.3 The Unitary Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 13 Quadratic Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.1 Quadratic Forms on Real Vector Spaces. . . . . . . . . . . . . . . . . . 213 13.2 Quadratic Forms on Complex Vector Spaces . . . . . . . . . . . . . . 222 13.3 The Minkowski Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4 Electro-Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 14 Affine Linear Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.1 Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.2 Lines and Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 14.3 General Linear Affine Varieties and Parallelism . . . . . . . . . . . . 245 14.4 The Cartesian Form of Linear Affine Varieties . . . . . . . . . . . . . 249 14.5 Intersection of Linear Affine Varieties . . . . . . . . . . . . . . . . . . . 258 15 Euclidean Affine Linear Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.1 Euclidean Affine Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 15.2 Orthogonality Between Linear Affine Varieties. . . . . . . . . . . . . 272 15.3 The Distance Between Linear Affine Varieties . . . . . . . . . . . . . 276 15.4 Bundles of Lines and of Planes . . . . . . . . . . . . . . . . . . . . . . . . 283 15.5 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 16 Conic Sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 16.1 Conic Sections as Geometric Loci . . . . . . . . . . . . . . . . . . . . . . 293 16.2 The Equation of a Conic in Matrix Form . . . . . . . . . . . . . . . . . 298 16.3 Reduction to Canonical Form of a Conic: Translations . . . . . . . 301 16.4 Eccentricity: Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 16.5 Conic Sections and Kepler Motions. . . . . . . . . . . . . . . . . . . . . 309 16.6 Reduction to Canonical Form of a Conic: Rotations . . . . . . . . . 310 16.7 Eccentricity: Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 16.8 Why Conic Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 Appendix A: Algebraic Structures.. .... .... .... .... .... ..... .... 329 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 343 Introduction Thisbookoriginatesfromacollectionoflecturenotesthatthefirstauthorprepared at the University of Trieste with Michela Brundu, over a span of fifteen years, together with the more recent one written by the second author. The notes were meant for undergraduate classes on linear algebra, geometry and more generally basic mathematical physics delivered to physics and engineering students, as well as mathematics students in Italy, Germany and Luxembourg. Thebookismainlyintendedtobeaself-containedintroductiontothetheoryof finite-dimensional vector spaces and linear transformations (matrices) with their spectral analysis both on Euclidean and Hermitian spaces, to affine Euclidean geometry as well as to quadratic forms and conic sections. Many topics are introduced and motivated by examples, mostly from physics. They show how a definition is natural and how the main theorems and results are first of all plausible before a proof is given. Following this approach, the book presents a number of examples and exercises, which are meant as a central part in thedevelopmentofthetheory.Theyareallcompletelysolvedandintendedbothto guidethestudenttoappreciatetherelevantformalstructuresandtogiveinseveral cases a proof and a discussion, within a geometric formalism, of results from physics, notably from mechanics (including celestial) and electromagnetism. Being the book intended mainly for students in physics and engineering, we tasked ourselves not to present the mathematical formalism per se. Although we decided,for clarity'ssakeofourreaders,toorganisethebasicsofthetheoryinthe classical terms of definitions and the main results as theorems or propositions, we dooftennotfollowthestandardsequentialformofdefinition—theorem—corollary —example and provided some two hundred and fifty solved problems given as exercises. Chapter 1 of the book presents the Euclidean space used in physics in terms of applied vectors with respect to orthonormal coordinate system, together with the operation of scalar, vector and mixed product. They are used both to describe the motion of a point mass and to introduce the notion of vector field with the most relevant differential operators acting upon them. Chapters 2 and 3 are devoted to a general formulation of the theory of finite-dimensionalvectorspacesequippedwithascalarproduct,whiletheChaps.4 –6 present, via a host of examples and exercises, the theory offinite rank matrices and their use to solve systems of linear equations. These are followed by the theory of linear transformations in Chap. 7. Such a theoryisdescribedinChap.8intermsoftheDirac’sBra-Ketformalism,providing a link to a geometric–algebraic language used in quantum mechanics. Thenotionofthediagonalactionofanendomorphismoramatrix(theproblem ofdiagonalisationandofreductiontotheJordanform)iscentralinthisbook,andit is introduced in Chap. 9. Againwithmanysolvedexercisesandexamples,Chap.10describesthespectral theoryforoperators(matrices)onEuclideanspaces,and(inChap.11)howitallows onetocharacterisetherotationsinclassicalmechanics.Thisisdonebyintroducing the Euler angles which parameterise rotations of the physical three-dimensional space, the notion of angular velocity and by studying the motion of a rigid body withitsinertiamatrix,andformulatingthedescriptionofthemotionwithrespectto differentinertialobservers,alsogivingacharacterisationofpolarandaxialvectors. Chapter 12 is devoted to the spectral theory for matrices acting on Hermitian spaces in order to present a geometric setting to study a finite level quantum mechanicalsystem,wherethetimeevolutionisgivenintermsoftheunitarygroup. All these notions are related with the notion of Lie algebra and to the exponential map on the space offinite rank matrices. In Chap. 13, we present the theory of quadratic forms. Our focus is the description of their transformation properties, so to give the notion of signature, both in the real and in the complex cases. As the most interesting example of a non-Euclidean quadratic form, we present the Minkowski spacetime from special relativity and the Maxwell equations. In Chaps. 14 and 15, we introduce through many examples the basics of the Euclideanaffinelineargeometryanddeveloptheminthestudyofconicsections,in Chap. 16, which are related to the theory of Kepler motions for celestial body in classicalmechanics.Inparticular,weshowhowtocharacteriseaconicbymeansof its eccentricity. A reader of this book is only supposed to know about number sets, more precisely the natural, integer, rational and real numbers and no additional prior knowledgeisrequired.Totrytobeasmuchself-containedaspossible,anappendix collects a few basic algebraic notions, like that of group, ring and field and maps between them that preserve the structures (homomorphisms), and polynomials in onevariable.Therearealsoafewbasicpropertiesofthefieldofcomplexnumbers and of the field of (classes of) integers modulo a prime number. Trieste, Italy Giovanni Landi Napoli, Italy Alessandro Zampini May 2018 Chapter 1 Vectors and Coordinate Systems Thenotionofavector,ormorepreciselyofavectorappliedatapoint,originatesin physicswhendealingwithanobservablequantity.Bythisorsimplybyobservable, onemeansanythingthatcanbemeasuredinthephysicalspace—thespaceofphysical events— via a suitable measuring process. Examples are the velocity of a point particle, or its acceleration, or a force acting on it. These are characterised at the pointofapplicationbyadirection,anorientationandamodulus(ormagnitude).In the following pages we describe the physical space in terms of points and applied vectors,andusethesetodescribethephysicalobservablesrelatedtothemotionofa pointparticlewithrespecttoacoordinatesystem(areferenceframe).Thegeometric structures introduced in this chapter will be more rigorously analysed in the next chapters. 1.1 AppliedVectors We refer to the common intuition of a physical space made of points, where the notionsofstraightlinebetweentwopointsandofthelengthofasegment(orequiv- alentlyofdistanceoftwopoints)areassumedtobegiven.Then,avectorv canbe denotedas v = B− A or v = AB, where A,B aretwopointsofthephysicalspace.Then, Aisthepointofapplication ofv,itsdirectionisthestraightlinejoiningBtoA,itsorientationtheoneofthearrow pointingfrom Atowards B,anditsmodulustherealnumber(cid:2)B− A(cid:2)=(cid:2)A−B(cid:2), thatisthelength(withrespecttoafixedunit)ofthesegment AB. 2 1 VectorsandCoordinateSystems Fig.1.1 Theparallelogramrule IfS denotestheusualthreedimensionalphysicalspace,wedenoteby W3 ={B− A| A,B ∈S} thecollectionofallappliedvectorsatanypointofS andby V3 ={B− A| B ∈S} A thecollectionofallvectorsappliedat AinS.Then (cid:2) W3 = V3. A A∈S Remark1.1.1 Oncefixedapoint O inS,oneseesthatthereisabijectionbetween the set V3 ={B−O | B ∈S} and S itself. Indeed, each point B in S uniquely O determines the element B−O in V3, and each element B−O in V3 uniquely O O determinesthepoint B inS. It is well known that the so called parallelogram rule defines in V3 a sum of O vectors,where (A−O)+(B−O)=(C −O), withC thefourthvertexoftheparallelogramwhoseotherthreeverticesare A, O, B,asshowninFig.1.1. The vector 0= O−O is called the zero vector (or null vector); notice that its modulusiszero,whileitsdirectionandorientationareundefined. It is evident that V3 is closed with respect to the notion of sum defined above. O Thatsuchasumisassociativeandabelianispartofthecontentoftheproposition thatfollows. Proposition1.1.2 Thedatum(V3,+,0)isanabeliangroup. O Proof Clearlythezerovector0istheneutral(identity)elementforthesuminV3, O thataddedtoanyvectorleavethelatterunchanged.AnyvectorA−Ohasaninverse 1.1 AppliedVectors 3 Fig.1.2 Theoppositeofavector:A(cid:4)−O =−(A−O) Fig.1.3 Theassociativityofthevectorsum withrespecttothesum(thatis,anyvectorhasanoppositevector)givenby A(cid:4)−O, where A(cid:4) isthesymmetricpointto Awithrespectto O onthestraightlinejoining Ato O (seeFig.1.2). From its definition the sum of two vectors is a commutative operation. For the associativitywegiveapictorialargumentinFig.1.3. (cid:2) There is indeed more structure. The physical intuition allows one to consider multiplesofanappliedvector.ConcerningthecollectionV3,thisamountstodefine O anoperationinvolvingvectorsappliedinOandrealnumbers,which,inordernotto createconfusionwithvectors,arecalled(real)scalars. Definition1.1.3 Giventhescalarλ∈ Randthevector A−O ∈ V3,theproduct O byascalar B − O = λ(A − O) isthevectorsuchthat: (i) A,B,O areonthesame(straight)line, (ii) B − O and A − O have the same orientation if λ>0, while A − O and B − O haveoppositeorientationsifλ<0, (iii) (cid:2)B − O(cid:2) = |λ|(cid:2)A − O(cid:2). The main properties of the operation of product by a scalar are given in the followingproposition. Proposition1.1.4 For any pair of scalars λ,μ ∈ R and any pair of vectors A − O, B − O ∈ V3,itholdsthat: O

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.