ebook img

Light Scattering Reviews : Single and Multiple Light Scattering (Springer Praxis Books Environmental Sciences) PDF

509 Pages·2006·4.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Light Scattering Reviews : Single and Multiple Light Scattering (Springer Praxis Books Environmental Sciences)

Light Scattering Reviews Single andMultiple Light Scattering Alexander A. Kokhanovsky (Editor) Light Scattering Reviews Single and Multiple Light Scattering Published in association with Praxis Publishing Chichester, UK Editor Dr Alexander A. Kokhanovsky Institute of Environmental Physics University of Bremen Bremen Germany SPRINGER–PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES SUBJECT ADVISORY EDITOR: John Mason B.Sc., M.Sc., Ph.D. ISBN 3-540-25315-7 Springer-Verlag Berlin Heidelberg New York Springer is part of Springer-Science + Business Media (springeronline.com) Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available from the Internet at http://dnb.ddb.de Library of Congress Control Number: 2005935704 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. # Praxis Publishing Ltd, Chichester, UK, 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Jim Wilkie Project copy editor: Mike Shardlow Author-generated LaTex, processed by EDV-Beratung, Germany Printed on acid-free paper Contents List of contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI Notes on the contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIII Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XXI Part I Single Light Scattering 1 Experimental light scattering matrices from the Amsterdam Light Scattering Database Olga Mun˜oz and Hester Volten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Light scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Calibration measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.2 Scanning electron microscope images . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 Particle composition and refractive indices . . . . . . . . . . . . . . . . 10 1.4.4 Size distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Applications and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Mineral aerosol particles with moderate refractive indices . . . 15 1.5.2 Shape effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.3 Size effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.4 Color effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Light scattering and absorption by nonspherical ice crystals Ping Yang and Kuo-Nan Liou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Geometric optics for light scattering by large ice crystals . . . . . . . . . . . 33 2.3 The finite-difference time domain method . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 VI Contents 3 Light scattering and absorption characteristics of optically soft particles Subodh K. Sharma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 Small phase shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2.1 Rayleigh–Gans-Debye approximation . . . . . . . . . . . . . . . . . . . . . 73 3.2.2 Modified RGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.3 Quasistatic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.4 Shifrin and Ston approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.2.5 Walstra approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3 Potential scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Arbitrary phase shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Straight line approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4.2 Perelman approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.3 Hart and Montroll approximation . . . . . . . . . . . . . . . . . . . . . . . 99 3.4.4 Evans and Fournier approximation . . . . . . . . . . . . . . . . . . . . . . . 100 3.4.5 Bohren and Nevitt approximation . . . . . . . . . . . . . . . . . . . . . . . . 101 3.4.6 Numerical comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.5 Nonspherical scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4 Single light scattering: computational methods Victor G. Farafonov and Vladimir B. Il’in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2 Light scattering problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.1 Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.2 Hertz vectors and scalar potentials . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.3 Light scattering problem for a small particle . . . . . . . . . . . . . . . 127 4.2.4 Methods of solving the problem using field expansions . . . . . . 128 4.2.5 Selected bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4.2.6 Specific approach for axisymmetric scatterers . . . . . . . . . . . . . . 133 4.3 Solutions using the spherical wave functions . . . . . . . . . . . . . . . . . . . . . . 134 4.3.1 Potential expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.3.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3.3 Methods to determine the expansion coefficients . . . . . . . . . . . 138 4.3.4 Applicability of the methods based on the spherical basis . . . 145 4.4 Solutions using the spheroidal wave functions . . . . . . . . . . . . . . . . . . . . . 150 4.4.1 Features of the problem formulation . . . . . . . . . . . . . . . . . . . . . . 151 4.4.2 Some details of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.4.3 Applicability of the methods based on the spheroidal basis . . 162 4.5 Solution using the ellipsoidal wave functions . . . . . . . . . . . . . . . . . . . . . . 166 4.5.1 Ellipsoidal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.5.2 Scalar potentials and the separation of variables . . . . . . . . . . . 167 4.5.3 Ellipsoidal wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.5.4 Potential expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Contents VII 4.5.5 Determination of the expansion coefficients . . . . . . . . . . . . . . . . 169 4.5.6 Comparison with a solution based on the spheroidal basis . . . 170 4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Part II Multiple Light Scattering 5 Multiple scattering of short waves by uncorrelated and correlated scatterers Anatoli G. Borovoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.1 Waves in free space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.1.1 General equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.1.2 Chain of wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.1.3 Corpuscular treatment of short waves . . . . . . . . . . . . . . . . . . . . . 185 5.1.4 Equations for quadratic values . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 5.1.5 Energy conservation law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.2 Wave scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.2.1 Scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.2.2 General wave scattering equation . . . . . . . . . . . . . . . . . . . . . . . . 195 5.2.3 Scattered field in the wave zone . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.2.4 Optical theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.2.5 Scattering of waves by small scatterers . . . . . . . . . . . . . . . . . . . . 199 5.2.6 Large scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.3 Multiple scattering of waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.1 General equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 5.3.2 Two limiting cases for multiple scattering of waves . . . . . . . . . 213 5.4 Multiple scattering by uncorrelated scatterers . . . . . . . . . . . . . . . . . . . . 215 5.4.1 Uncorrelated scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 5.4.2 Average or coherent field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 5.4.3 Multiple scattering of short and long waves . . . . . . . . . . . . . . . . 219 5.4.4 Exponential extinction law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.4.5 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.4.6 Assessment of remaining diagrams . . . . . . . . . . . . . . . . . . . . . . . 229 5.4.7 Spatial coherence function for random media with large scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 5.4.8 Small-angle radiative transfer equation . . . . . . . . . . . . . . . . . . . 233 5.5 Multiple scattering by correlated scatterers . . . . . . . . . . . . . . . . . . . . . . . 236 5.5.1 Correlated scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 5.5.2 General equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 5.5.3 Transparency for ensembles of correlated scatterers . . . . . . . . . 239 5.5.4 Transparency of monolayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 5.5.5 Transparency of random media in the framework of the stochastic radiative transfer theory . . . . . . . . . . . . . . . . . 248 Bibliographic comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 VIII Contents 6 Asymptotic radiative transfer A.A. Kokhanovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 6.2 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 6.3 Reflection and transmission functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 6.4 Asymptotic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 6.4.1 Auxiliary functions and relationships . . . . . . . . . . . . . . . . . . . . . 259 6.4.2 Asymptotic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 6.4.3 Weak absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 6.4.4 Nonabsorbing media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 6.5 Exponential approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 6.5.1 Semi-infinite light scattering media . . . . . . . . . . . . . . . . . . . . . . . 280 6.5.2 Optically thick light scattering layers . . . . . . . . . . . . . . . . . . . . . 283 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 7 Multiple scattering of polarized light in turbid media with large particles Evgenii E. Gorodnichev, Alexander I. Kuzovlev, and Dmitrii B. Rogozkin . 291 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 7.2 General relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 7.3 Polarization mode approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 7.4 Diffusive propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 7.5 Small-angle multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 7.5.1 Unpolarized light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 7.5.2 Circularly polarized light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 7.5.3 Linearly polarized light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 7.6 A narrow beam of linearly polarized light . . . . . . . . . . . . . . . . . . . . . . . . 325 7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 8 Adjoint radiative transfer equation and inverse problems Vladimir V. Rozanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 8.2 Instrument response function and the mathematical model of the ideal measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 8.3 Linearization and the variational derivative . . . . . . . . . . . . . . . . . . . . . . . 343 8.4 Standard and generalized forms of the vector RTE . . . . . . . . . . . . . . . . 346 8.4.1 Standard form of the vector RTE . . . . . . . . . . . . . . . . . . . . . . . . 347 8.4.2 Operator form of the direct VRTE . . . . . . . . . . . . . . . . . . . . . . . 349 8.4.3 Generalized form of the direct VRTE . . . . . . . . . . . . . . . . . . . . . 350 8.5 Generalized form of the adjoint radiative transfer operator . . . . . . . . . 351 8.6 Adjoint radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 8.7 General expression for the weighting function . . . . . . . . . . . . . . . . . . . . . 357 8.7.1 Linearization of the direct VRTE with respect to the variation of optical and surface parameters . . . . . . . . . . . . . . . . 357 Contents IX 8.7.2 Adjoint approach and the weighting function . . . . . . . . . . . . . . 360 8.8 Weighting functions for main optical and surface parameters . . . . . . . 361 8.9 Other representations for weighting functions . . . . . . . . . . . . . . . . . . . . . 365 8.9.1 Separation of the total adjoint intensity in the diffuse and direct components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 8.9.2 Representation of weighting functions for the total forward and diffuse adjoint intensity (TD representation) . . . . . . . . . . . 369 8.9.3 Representation of weighting functions for the diffuse forward and diffuse adjoint intensity (DT and DD representation) . . . 370 8.9.4 Using the formal solution of the direct VRTE for the weighting function derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 8.10 Comparison with previous results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 8.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Appendix A: Derivation of t(τ, µ) and b(τ, µ) . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Appendix B: Adjoint modified differential operator . . . . . . . . . . . . . . . . . . . . . 386 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 Part III Applications 9 Light scattering in combustion Alan R. Jones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 9.2 Soot and other nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 9.3 Liquid fuel sprays and pulverised fuel (PF) . . . . . . . . . . . . . . . . . . . . . . . 414 9.4 Numerical inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 9.5 Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 9.7 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 10 Absorption and scattering of light in natural waters Vladimir I. Haltrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 10.2 Absorption of light in natural water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 10.3 Elastic scattering of light in natural water . . . . . . . . . . . . . . . . . . . . . . . . 450 10.3.1 Rayleigh scattering in pure water . . . . . . . . . . . . . . . . . . . . . . . . 450 10.3.2 Petzold experimental volume scattering functions . . . . . . . . . . 451 10.3.3 Mankovsky experimental volume scattering functions . . . . . . . 451 10.3.4 Lee experimental volume scattering functions . . . . . . . . . . . . . . 451 10.3.5 Relationships between integral properties of experimental light scattering phase functions . . . . . . . . . . . . . . . . . . . . . . . . . . 459 10.4 Raman scattering of light in natural water . . . . . . . . . . . . . . . . . . . . . . . 463 10.5 Chlorophyll fluorescence in natural water . . . . . . . . . . . . . . . . . . . . . . . . 466 10.6 Yellow substance (Gelbstoff, DOM or CDOM) fluorescence in natural water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 X Contents 10.7 Diffuse reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 10.8 Diffuse reflection coefficient of a water basin illuminated by direct solar light and diffuse light of the sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 10.9 Diffuse reflection coefficient of shallow water body illuminated by diffuse light . . . . . . . . . . . . . . . . . . . 474 10.10 Diffuse attenuation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 10.11 Optical models of scattering and absorption of light in natural water 476 10.11.1 The Kopelevich physical model of elastic scattering . . . . . . . . . 476 10.11.2 Chlorophyll-based model of elastic scattering and absorption 477 10.11.3 Empirical model of inherent optical properties . . . . . . . . . . . . . 478 10.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Appendix: Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.