ebook img

Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface PDF

261 Pages·2013·5.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface

Light Scattering Reviews 7 RadiativeTransferandOpticalPropertiesofAtmosphereand UnderlyingSurface Alexander A. Kokhanovsky (Editor) Light Scattering Reviews 7 Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface Published inassociationwith PPrraaxxiiss PPuubblliisshhiinngg Chichester, UK Dr Alexander A. Kokhanovsky Institute of Environmental Physics University of Bremen Bremen Germany SPRINGER–PRAXIS BOOKS IN ENVIRONMENTAL SCIENCES (LIGHT SCATTERING SUB-SERIES) EDITORIALADVISORYBOARDMEMBER:DrAlexanderA.Kokhanovsky,Ph.D.,InstituteofEnvironmental Physics,UniversityofBremen,Bremen,Germany ISBN 978-3-642-21906-1 ISBN 978-3-642-21907-8 (eBook) DOI 10.1007/978-3-642-21907-8 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2012945183 © Springer-Verlag Berlin Heidelberg 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover design: Jim Wilkie Project copy editor: Mike Shardlow Author-generated LaTex, processed by EDV-Beratung, Germany Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents List of contributors ................................................ IX Notes on the contributors ......................................... XI Preface ............................................................XIX Part I Light Scattering and Radiative Transfer 1 Light scattering by densely packed systems of particles: near-field effects Victor P. Tishkovets and Elena V. Petrova.............................. 3 1.1 Introduction.................................................... 3 1.2 Scattering of electromagnetic waves by a system of spherical particles. Basic notions and equations ...................................... 5 1.3 Shielding of particles by each other in the near field ................. 9 1.3.1 Mutual shielding in simple systems of particles .............. 9 1.3.2 Mutual shielding of particles in chaotically oriented large clusters ............................................ 14 1.4 Interaction of particles in the near field and the opposition phenomena 17 1.4.1 The field inhomogeneity near the scatterers ................. 17 1.4.2 Different scattering mechanisms: comparison of contributions to the scattering characteristics of simple clusters ............ 22 1.4.3 Near-field effects in the large clusters ....................... 26 1.4.4 The near-field and weak-localization effects: the ranges of influence.............................................. 29 1.5 Concluding remarks ............................................. 33 References .......................................................... 33 2 Multi-spectral luminescence tomography with the simplified spherical harmonics equations Alexander D. Klose .................................................. 37 2.1 Introduction.................................................... 37 2.2 Challenges in tissue optics ....................................... 39 2.2.1 Tissue scattering and absorption ........................... 39 2.2.2 Tomography and light source reconstruction................. 41 V VI Contents 2.3 Methods of multi-spectral luminescence tomography................. 44 2.3.1 Radiative transfer model.................................. 44 2.3.2 Source reconstruction methods............................. 50 2.4 Applications.................................................... 54 2.4.1 Multi-spectral bioluminescence tomography ................. 54 2.4.2 Multi-spectral Cerenkov light tomography................... 56 2.4.3 Multi-spectral fluorescence tomography ..................... 57 2.5 Summary and Outlook .......................................... 59 References .......................................................... 61 3 Markovian approach and its applications in a cloudy atmosphere Evgueni Kassianov, Dana E. Lane-Veron, Larry K. Berg, Mikhail Ovchinnikov, and Pavlos Kollias................................ 69 3.1 Introduction.................................................... 69 3.2 Stochastic radiative transfer...................................... 71 3.3 Markovian cloud models ......................................... 75 3.3.1 Levermore–Pomraning model.............................. 75 3.3.2 Titov model............................................. 77 3.3.3 Generalized Titov model.................................. 79 3.4 Estimation of model parameters .................................. 83 3.4.1 Vertically-integrated statistics ............................. 83 3.4.2 Vertically-resolved statistics ............................... 85 3.5 Long-term and enhanced observational datasets..................... 88 3.5.1 Multi-year statistics ...................................... 88 3.5.2 Scanning cloud radar observations.......................... 90 3.6 Application of Markovian models ................................. 91 3.7 Summary ...................................................... 93 Appendix A: Markov processes and fields ............................... 95 Appendix B: Functions associated with ‘direct-beam’ exponential components and asymptotic cases ................................. 97 Appendix C: Estimation of cloud statistics .............................. 98 List of abbreviations ................................................. 100 References .......................................................... 100 4 Database of optical and structural data for the validation of forest radiative transfer models Andres Kuusk, Mait Lang, and Joel Kuusk .............................. 109 4.1 Introduction.................................................... 109 4.2 Study site...................................................... 110 4.3 Instrumentation ................................................ 111 4.3.1 PROBA/CHRIS imaging spectrometer ..................... 111 4.3.2 Airborne spectrometer UAVSpec........................... 111 4.3.3 Spectrometer FieldSpec-Pro VNIR ......................... 112 4.3.4 Spectrometer GER-2600 .................................. 112 4.3.5 LAI-2000 plant canopy analyzer (Li-Cor).................... 112 4.3.6 Coolpix-4500 digital camera ............................... 112 4.3.7 Nikon total station DTM-332.............................. 112 4.3.8 Leica ALS50-II airborne laser scanner ...................... 113 Contents VII 4.4 Measurements .................................................. 113 4.4.1 Stand structure.......................................... 113 4.4.2 Spectroscopic measurements............................... 114 4.5 Data processing................................................. 117 4.5.1 Stand structure.......................................... 117 4.5.2 Leaf and needle optical properties.......................... 117 4.5.3 Correction of UAVSpec data .............................. 120 4.5.4 Satellite data............................................ 122 4.6 Data .......................................................... 127 4.6.1 Illumination conditions ................................... 127 4.6.2 Stands.................................................. 129 4.7 Concluding remarks ............................................. 143 References .......................................................... 145 Part II Optical Properties of Snow and Natural Waters 5 Reflection properties of snow surfaces Teruo Aoki.......................................................... 151 5.1 Introduction.................................................... 151 5.2 Basic definitions and terminologies ................................ 153 5.3 Feedback effect between snow physical parameters and albedo ........ 155 5.4 Atmospheric effects on snow albedo ............................... 157 5.4.1 Radiative transfer model for the atmosphere–snow system..... 157 5.4.2 Aerosol and cloud effects on spectral surface albedo .......... 158 5.4.3 Effect of the difference in atmospheric type on spectrally integrated albedo ........................................ 161 5.4.4 Aerosol and cloud effects on spectrally integrated albedo ...... 162 5.5 Effects of snow physical parameters on spectral albedo and bidirectional reflectance.......................................... 165 5.5.1 Observational condition, instrumentation, and radiative transfer model........................................... 165 5.5.2 Spectral albedo .......................................... 166 5.5.3 Observation of HDRF .................................... 170 5.5.4 Theoretical calculations of HDRF and comparison with the measurements ........................................... 172 5.6 Effects of snow physical parameters on broadband albedos ........... 174 5.6.1 Instrumentation, observational condition, and radiative transfer model........................................... 174 5.6.2 Effects of the snow grain size on broadband albedos .......... 176 5.6.3 Effects of the snow impurities on broadband albedos.......... 178 5.7 Concluding remarks ............................................. 179 References .......................................................... 182 VIII Contents 6 Measuring optical backscattering in water James M. Sullivan, Michael S. Twardowski, J. Ronald, V. Zaneveld, and Casey C. Moore.................................................. 189 6.1 Introduction.................................................... 189 6.2 Generic sensor description........................................ 191 6.3 Bead method calibration......................................... 192 6.3.1 Overview ............................................... 192 6.3.2 Determination of the weighting function, W(θ) .............. 193 6.3.3 Determining theoretical phase functions..................... 199 6.3.4 Experimental calibration and application.................... 199 6.3.5 Dependence of the scattering signal on attenuation ........... 200 6.4 Derivation of b from VSF measurements at single or multiple angles .. 201 b 6.5 Analysis of measurement uncertainties ............................ 205 6.5.1 Calibration.............................................. 205 6.5.2 Instrument resolution and electronic noise .................. 207 6.5.3 Long-term stability in background dark offsets (baseline noise). 208 6.5.4 Long-term stability in scaling factors ...................... 210 6.5.5 Environmentally induced uncertainties...................... 211 6.5.6 Conversion coefficient (χ factor) uncertainties ............... 214 6.5.7 Measurement uncertainty summary ........................ 215 6.6 Sensor comparisons in the field ................................... 216 6.7 Conclusions .................................................... 219 References .......................................................... 220 7 Molecular light scattering by pure seawater Xiaodong Zhang ..................................................... 225 7.1 Introduction.................................................... 225 7.2 General theory of scattering ...................................... 226 7.2.1 Isotropic particles........................................ 226 7.2.2 Anisotropic particles ..................................... 230 7.2.3 Liquid solutions.......................................... 232 7.2.4 Seawater................................................ 233 7.3 Brief review and discussion....................................... 234 7.3.1 Density derivative........................................ 235 7.3.2 Depolarization ratio ...................................... 236 7.3.3 Effects of sea salts ....................................... 237 7.3.4 Other relevant issues ..................................... 239 7.4 Conclusions .................................................... 241 References .......................................................... 241 Index.............................................................. 245 List of Contributors Teruo Aoki Andres Kuusk Meteorological Research Institute Tartu Observatory 1-1 Nagamine 61602 T˜oravere Tsukuba Estonia Ibaraki 305-0052 [email protected] Japan [email protected] Joel Kuusk Tartu Observatory Larry K. Berg 61602 T˜oravere Atmospheric Science & Global Change Estonia Division [email protected] Pacific Northwest National Laboratory PO Box 999, MSIN K9-24 Dana E. Lane-Veron Richland, WA 99352 University of Delaware USA College of Earth, Ocean, and [email protected] Environment 114 B Robinson Hall Evgueni Kassianov Newark, DE 19716 Atmospheric Science & Global Change USA Division [email protected] Pacific Northwest National Laboratory PO Box 999, MSIN K9-24 Mait Lang Richland, WA 99352 Tartu Observatory USA 61602 T˜oravere [email protected] Estonia [email protected] Alexander D. Klose Department of Radiology Casey C. Moore Harkness Pavilion, 3rd Floor WET Labs, Inc. 180 Fort Washington Avenue 620 Applegate Street New York, NY 10032 Philomath, OR, 97370 USA USA [email protected] [email protected] Pavlos Kollias Mikhail Ovchinnikov McGill University Atmospheric Science & Global Change Department of Atmospheric Division and Oceanic Sciences Pacific Northwest National Laboratory 805 Sherbrooke Street West PO Box 999, MSIN K9-24 Montreal, Quebec H3A 0B9 Richland, WA 99352 Canada USA [email protected] [email protected] IX X List of Contributors Elena V. Petrova Michael S. Twardowski Space Research Institute of RAS WET Labs, Inc., Department of Research Profsoyuznaya 84/32 70 Dean Knauss Drive 117997, Moscow Narragansett, RI 02882 Russia USA [email protected] [email protected] James M. Sullivan J. Ronald V. Zaneveld WET Labs, Inc. WET Labs, Inc. 70 Dean Knauss Road, 620 Applegate Street Narragansett, RI 02882 Philomath, OR 97370 USA USA [email protected] [email protected] Victor P. Tishkovets Xiaodong Zhang Institute of Radio Astronomy of NASU Earth System Science and Policy 4 Chervonopraporna Str. University of North Dakota Kharkov, 61002 Grand Forks, ND 58202 Ukraine USA [email protected] [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.