Mon.Not.R.Astron.Soc.000,1–17(2007) Printed3February2008 (MNLATEXstylefilev2.2) Light and Motion in SDSS Stripe 82: The Catalogues D.M. Bramich1,2⋆, S. Vidrih1,3, L. Wyrzykowski1, J.A. Munn4, H. Lin5, N.W. Evans1, 1 1 1 1 1 1 M.C. Smith , V. Belokurov , G. Gilmore , D.B. Zucker , P.C. Hewett , L.L. Watkins , 8 D.C. Faria1, M. Fellhauer1, G. Miknaitis5, D. Bizyaev6, Zˇ. Ivezic´7, 0 8 6 6 6 6 0 D.P. Schneider , S.A. Snedden , E. Malanushenko , V. Malanushenko , K. Pan 2 n a 1InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK J 2IsaacNewtonGroupofTelescopes,ApartadodeCorreos321,E-38700SantaCruzdelaPalma,CanaryIslands,Spain 1 3AstronomischesRechen-Institut/Zentrumfu¨rAstronomiederUniversita¨tHeidelberg,Mo¨nchhofstrasse12-14,69120Heidelberg,Germany 3 4USNavalObservatory,FlagstaffStation,10391W.NavalObservatoryRoad,Flagstaff,AZ86001-8521,USA 5FermiNationalAcceleratorLaboratory,Box500,Batavia,IL60510,USA ] 6ApachePointObservatory,2001ApachePointRd.,Sunspot,NM88349,USA h 7DepartmentofAstronomy,UniversityofWashington,Seattle,WA98155,USA p 8DepartmentofAstronomyandAstrophysics,ThePennsylvaniaStateUniversity,UniversityPark,PA16802,USA - o r t s Accepted2007August???.Received2007August???;Submitted2007August??? a [ 1 ABSTRACT v Wepresentanewpublicarchiveoflight-motioncurvesinSloanDigitalSkySurvey(SDSS) 4 Stripe 82, covering 99◦ in right ascension from α = 20.7h to 3.3h and spanning 2◦.52 in 9 declinationfromδ = −1◦.26to 1◦.26,for a totalskyarea of ∼249deg2. Stripe 82hasbeen 8 repeatedly monitored in the u, g, r, i and z bands over a seven-year baseline. Objects are 4 cross-matched between runs, taking into account the effects of any proper motion. The re- . 1 sultingcataloguecontainsalmost4 millionlight-motioncurvesofstellar objectsandgalax- 0 ies.Thephotometryarerecalibratedtocorrectforvaryingphotometriczeropoints,achieving 8 ∼20mmagand∼30mmagroot-mean-square(RMS)accuracydownto18magintheg,r,i 0 andz bandsforpointsourcesandextendedsources,respectively.Theastrometryarerecali- : v bratedtocorrectforinherentsystematicerrorsintheSDSSastrometricsolutions,achieving i ∼32masand∼35masRMSaccuracydownto18magforpointsourcesandextendedsources, X respectively. r Foreachlight-motioncurve,229photometricandastrometricquantitiesarederivedand a stored in a higher-levelcatalogue.On the photometricside, these include meanexponential andPSFmagnitudesalongwithuncertainties,RMSscatter,χ2perdegreeoffreedom,various magnitude distribution percentiles, object type (stellar or galaxy), and eclipse, Stetson and Vidrih variability indices. On the astrometric side, these quantities include mean positions, propermotionsaswellastheiruncertaintiesandχ2perdegreeoffreedom.Theherepresented light-motion curve catalogue is complete down to r ∼ 21.5 and is at present the deepest large-areaphotometricandastrometricvariabilitycatalogueavailable. Keywords: catalogues-stars:photometry,astrometry,variables-Galaxy:stellar content- galaxies:photometry 1 INTRODUCTION sitiononthesky,inwhichcasetheyhaveapropermotion.Overa sufficientlylongperiodoftime,theshapeofconstellationschange. Onemeaningoftheverb“tovary”istochangeinamountorlevel, Galaxies exhibit variability across the electromagnetic spectrum especially from one occasion to another. In astronomy, there are since their emission is made up of the radiation from billions of manytypesoftemporalvariability.Starsmaychangeinbrightness, sources, although their most obvious source of variation comes inwhichcasetheyaretermed“variables”,ortheymaychangepo- fromactivegalacticnucleiorsupernovae.Transientevents,suchas gamma-ray bursts, or microlensing events, are instrinsically vari- able. Solar system objects from planets to asteroids drift slowly ⋆ E-mail:[email protected] 2 D.M. Bramichet al. Table1.ThelistofSDSSimagingrunsincludedintheLMCC.Allrunswereprocessedwithversion40oftheSDSSframespipelineexceptthoseruns markedwithanasterisk,whichwereprocessedwithversion41.Runs4203and5823(underlined)arethereferencerunsusedfortheastrometriccalibrations (seeSection2.4). Year Month NorthStripRuns SouthStripRuns 1998 Sep 94 125 1999 Oct 1033 1056 2000 Sep 1752 - 2000 Oct - 1755 2000 Nov - 1894 2001 Jun 2385 - 2001 Sep 2570,2578,2589 2579,2583,2585 2001 Oct 2649,2650,2659,2662,2677 - 2001 Nov 2700,2708,2728,2738 2709 2001 Dec 2768,2820 - 2002 Jan 2855,2861,2873 2886 2002 Sep - 3325∗ 2002 Oct 3362,3384,3437 3355,3360∗,3388,3427,3430,3434,3438 2002 Nov 3461 3460,3465 2003 Sep 4128,4153,4157 4136,4145 2003 Oct 4184,4188,4198,4207 4187,4192,4203 2003 Nov 4253 4247,4263,4288 2004 Aug 4797 - 2004 Sep 4858 - 2004 Oct 4868,4874,4895,4905,4917 - 2004 Nov 4933,4948 4930 2004 Dec - 5042,5052 2005 Sep 5566,5603,5610,5622,5633,5642,5658 5582,5597,5607,5619,5628,5637,5646,5666 2005 Oct 5709,5719,5731,5744,5759,5765,5770,5777,5781,5792,5800 5675,5681,5713,5729,5730,5732,5745,5760,5763,5771,5776,5782,5786,5797 2005 Nov 5813,5823,5842,5865,5866,5872,5878,5898,5902,5918 5807,5820,5836,5847,5853,5870,5871,5882,5889,5895,5905,5924 acrossthesky,waxingandwaningonvarioustimescales.Infact, repeatedlyimageda300squaredegreearea,thesocalledStripe82, atsomelevel,everythingintheskyisvariable. duringthelaterhalfofeachyearsince1998.In2005, theSDSS- Theintroduction of CCDdetectors toastronomy greatlyen- IISupernovaSurvey(Friemanetal.2008)startedwiththeaimof hancedtheabilitytoconductvariabilitysurveys.Theextensionof detectingType-IsupernovaeinStripe82,greatlyimprovingtheca- CCDcamerastomosaicandwide-fieldformatsalongwiththeex- dence of measurements within the stripe. By averaging a subset ponentialprogressionofcomputingpowerhaveallowedthesubse- of the repeated observations of unresolved sources in Stripe 82, quent development ofmoreambitioussurveysreachingtodeeper Ivezic´etal. (2007) built a standard star catalogue containing ∼1 magnitudes, higher cadences and larger sky areas. For more de- millionnonvariable sources with r band magnitudes inthe range tails we direct the reader to Beckeretal. (2004) who present a 14-22, by far the deepest and most numerous set of photomet- clearsummaryofmodernvariabilitysurveys.Inthisworkwecon- ric standards available. Using these same multi-epoch photomet- centrateonoptical photometricandastrometricvariability(hence ricdata,Sesaratal.(2007)analysedthephotometricvariabilityfor “lightandmotion”)overa∼249deg2patchofsky. ∼1.4millionunresolvedsourcesinthestripe,drawinginteresting conclusions on the spatial distribution of RR Lyrae stars and the Large sky surveys such as the Sloan Digital Sky Sur- variabilityofquasars. vey (SDSS; Yorketal. 2000) have in many ways revolutionised our knowledge of theUniverse. SDSShasimaged approximately Herewepresentanewpublicarchiveoflight-motioncurves aquarteroftheskyinfivephotometricwavebands.Theexploita- inSDSSStripe82.Thearchivehasbeenconstructedfromthesetof tion of this impressive dataset has resulted in hundreds of pub- high-precision multi-epochphotometricandastrometricmeasure- lications covering a wide range of astronomical topics, from the ments made in the stripe since the first SDSS runs in 1998 until structure of the Milky Way to the mapping of a large fraction of theendof 2005. Inconstructing thecatalogue, weonlyusemea- the Universe. Thebulk of this data, however, contain only single surementsofobjectsthatarecleanlydetectedinindividual SDSS measurementsofobjectsfromthenorthGalacticcapwithnoinfor- runs.Thecataloguecontainsalmost4millionobjects,galaxiesand mationonpossiblephotometricvariabilityor astrometricmotion. stars,andiscompletedowntomagnitude21.5inu,g,randi,and SubstantialeffortshavebeenmadebyMunnetal.(2004)(seealso tomagnitude 20.5 inz. Eachobject has itsproper motion calcu- Gould&Kollmeier(2004))tomeasurepropermotionsbymatch- latedbasedonlyonthemulti-epochSDSSJ2000astrometricmea- ingSDSSdatafromthenorthGalacticcapwiththeUSNO-Bcata- surements. The catalogue reaches almost two magnitudes deeper logue(Monetetal.2003).Theresultantpropermotioncatalogueis than the SDSS/USNO-B catalogue, making it the deepest large- 90%completedowntog = 19.7withthemagnitudelimitbeing areaphotometricandastrometriccatalogueavailable. setbytheUSNO-Bcataloguefaintmagnitudelimits. Thecataloguecomesintwoflavours,theLight-MotionCurve OneoftheprimarygoalsoftheSDSSisthestudyofthevari- Catalogue (LMCC), which contains the set of individual light- ablesky(Adelman-McCarthyetal.2007)ofwhichourknowledge motioncurves,wheremeasuredquantitiesforeachobjectarelisted isstillveryincomplete(Paczyn´ski2000).Tothisend,theSDSShas asafunctionofwavebandandepoch, andtheHigher-LevelCat- Light andMotioninSDSSStripe82 3 alogue(HLC),whichpresentsasetofderivedquantitiesforeach 0.04 light-motion curve. For many purposes, it is more convenient to 0.02 workwiththeHLC,especiallyforselectingsubsetsofinteresting objects.Theconstruction,calibrationandformatoftheLMCCare n 0 o discussedinSection2,andtheHLCisdescribedinSection3.Be- ecti-0.02 tweenthetwosubcatalogues,thereisallthenecessaryinformation orr availabletoexplorethephotometricandastrometricvariabilityof et C-0.04 ∼249 square degrees of equatorial sky. In Section 4, we investi- ux Offs-0.06 gatethequalityofthephotometricandastrometricpropertiesofour Fl-0.08 cataloguesbycomparingthemagainstsuitableexternalcatalogues, nal andweanalysethebehaviourofourpropermotionuncertainties. actio -0.1 Fr-0.12 -0.14 -0.16 100 150 200 250 300 350 400 450 2 THELIGHT-MOTIONCURVECATALOGUE Field Number Figure 1. Plot ofthe median fractional flux offset of the reference stars 2.1 Stripe82Data relativetothereferencecatalogueasafunctionoffieldnumberforruns94 (solidline)and5853(dashedline).Forbothrunsweshowtheoffsetsfor The SDSS photometric camera is mounted on a 2.5m dedicated cameracolumn1andtherband.Run94isatypicalpre-2005runobserved telescopeattheApachePointObservatory,NewMexico.Itconsists underphotometricconditionsandrun5853isatypical2005supernovarun of a photometric array of 30 SITe/Tektronix CCDs, each of size observedundernon-photometricconditions. 2048x2048 pixels, arranged inthefocal planeof thetelescope in sixcolumnsoffivechipseach(Gunnetal.1998;Gunnetal.2006) with a space of approximately one chip width between columns. 2.2 FurtherPhotometricCalibrations Eachrowofsixchipsispositionedbehindadifferentfiltersothat TheStripe82datasetincludes62“standard”SDSSimagingruns SDSSimagingdataisproducedinfivewavebands,namely,u,g,r, which were observed under photometric conditions and which iandz(Fukugitaetal.1996;Smithatal.2002).Thecameraoper- werephotometricallycalibratedusingthestandardSDSSpipelines atesintime-delay-and-integrate(TDI)drift-scanmodeattheside- (Tuckeretal.2006).Weusethesestandardrunstoconstructaref- real rateandthe chiparrangement issuch that twoscans cover a erencecatalogueofbrightstarfluxes,fromwhichwecanbothim- filledstripe2◦.54wide,with∼1′ overlapbetweenchipcolumnsin provethephotometriccalibrationsofthestandardruns,aswellas thetwoscans.Inaddition,thecameracontainsanarrayof24CCDs derivephotometriccalibrationsfortheStripe82supernova imag- with 400x2048 pixels which enable observations of bright astro- ing runs from 2005, which were generally observed under non- metricreference starsfor subsequent astrometryand focus moni- photometricconditions. toring. To construct the reference catalogue, we start with a set of The images are automatically processed through spe- bright, unsaturated stars, with 14 < r < 18, taken from a set cialised pipelines (Lupton,Gunn&Szalay 1999; Luptonetal. of high qualityruns acquired over an interval of lessthan twelve 2001; Hoggetal. 2001; Stoughtonetal. 2002; Ivezic´etal. 2004) months(2659,2662,2738,2583,3325,3388).Wethenmatchthe producing corrected images, object catalogues, astrometric solu- individualdetectionsofthesestarsineachofthe62standardruns, tions, calibrated fluxes and many other data products. The object usingamatchingradiusof1arcsec.Onaverage,thereare10inde- catalogues, which include the calibrated photometry and astrom- pendent measurementsof eachstaramong thestandard runs,and etry, are stored in FITS binary table format (Wellsetal. 1981; we only include in the reference catalogue stars with 5 or more Cottonetal.1995;Hanischetal.2001)andreferredtoas“tsObj” measurements.Wethencomputetheunweightedmeanoftheinde- files.Itistheseobjectcataloguesthatwehaveusedtoconstructthe pendent fluxmeasurementsof eachstarandadopt thatmeanflux LMCC. inourreferencecatalogue.Notethatwespecificallyusethefluxes TheSDSSStripe82isdefinedastheregionspanning8hours measuredintheso-called SDSS“aperture 7”,whichhasaradius inrightascension(RA)fromα=20hto4hand2◦.5indeclination of7.43arcsec;thisapertureistypicallyadoptedintheSDSSasa (Dec) from δ = −1◦.25 to 1◦.25. The stripe consists of two scan referenceapertureappropriateforisolatedbrightstarphotometry. regionsreferredtoasthenorthandsouthstrips.Boththenorthand These reference catalogue stars are used to re-calibrate the southstripshavebeenrepeatedlyimagedfrom1998to2005, be- standardruns,aswellastocalibratethe2005supernovadata.For tweenJuneandDecemberofeachyear,with62ofthe134imaging thesupernovaruns,wefirstadoptasensiblebutarbitraryzeropoint runsobtainedin2005alone(thislargesamplingratewasproduced forthepurposesofgeneratingtheinitialtsObjfilesusingstandard by the start of the SDSS-IISupernova Survey). A specific imag- SDSSpipelinetools.Wethenmatchtheobjectdetectionsineach ingrunmaycoverallofonestriporsomefractionofthearea,and runtothereferencecatalogue,andcomputethemedianfractional images of the same patch of sky are never taken more than once fluxoffsetofthereferencestarsintheindividualrunrelativetothe per night. Hence theexact temporal coverage and cadence of the referencecatalogue1 Thesemedianoffsetsarecomputedintwoit- light-motioncurvesinthecataloguearestrongfunctionsofceles- tialposition.InTable1,welisttheSDSSimagingrunsincludedin theLMCCorganisedbythemonthandyearofobservation.Notall 1 Theubandimages possessasignificantly poorer signal-to-noise ratio scansofStripe82wereincludedinouranalysisduetofailuresin thantheotherbands andtheuseofreference catalogue starsthat havea theSDSSframespipeline(Luptonetal.2001)whenprocessing magnitudefainterthan18beforecalibration(duetohigherthanusualex- arunorfailureofourcalibrationroutinestoproducephotometric tinction) degrades the determination ofthe derived fluxoffsets. Theflux zeropoints(seeSection2.2). offsetsfortheubandhavethereforebeendeterminedusingonlytheref- 4 D.M. Bramichet al. Table2.ThelistofextraconstraintsthatallneedtobesatisfiedinatleastonewavebandinorderforanobjectrecordtobeincludedintheLMCC. TagNameIn Relation Flag Value FlagName Description tsObjFile (HexadecimalBit) OBJCFLAGS AND 0x4 FALSE EDGE Rejectobjectstooclosetotheedgeoftheimage FLAGS AND 0x10000000 TRUE BINNED1 Acceptonlyobjectsdetectedintheunbinnedimage FLAGS AND 0x20 FALSE PEAKCENTER Rejectobjectswherethegivencentreisthepositionofthepeak pixel,ratherthanbasedonthemaximumlikelihoodestimator FLAGS AND 0x80 FALSE NOPROFILE Rejectobjectsthataretoosmallortooclosetotheedgeto estimatearadialprofile FLAGS AND 0x40000 FALSE SATUR Rejectobjectswithoneormoresaturatedpixels FLAGS AND 0x80000 FALSE NOTCHECKED Rejectobjectswithpixelsthatwerenotcheckedtoseewhether theyincludedalocalpeak,suchasthecoresofsaturatedstars FLAGS AND 0x400000 FALSE BADSKY Rejectobjectswithaskylevelsobadlydeterminedthatthehighest pixelinanobjectisverynegative,farmoresothanamere non-detection FLAGS2 AND 0x100 FALSE BADCOUNTSERROR Rejectobjectscontaininginterpolatedpixelsthathavetoofew goodpixelstoformareliableestimateofthefluxerror FLAGS2 AND 0x800 FALSE SATURCENTER Rejectobjectswithacentreclosetoatleastonesaturatedpixel FLAGS2 AND 0x1000 FALSE INTERPCENTER Rejectobjectswithacentreclosetoatleastoneinterpolatedpixel FLAGS2 AND 0x4000 FALSE DEBLENDNOPEAK Rejectchildobjectswithnodetectedpeak FLAGS2 AND 0x8000 FALSE PSFFLUXINTERP Rejectobjectswithmorethan20%ofthePSFfluxfrom interpolatedpixels erations.Wefirstcalculatethemedianfractionaloffsetforeachrun 2.3 CatalogueConstruction inbinsof0.0208◦inDec,i.e.,120binsoverthewidthofStripe82, The object catalogues (tsObj files) contain quality and type flags orabout10binsperCCDwidth.Thisexerciseisdesignedtocorrect for each object record toaid inthe selection of “good” measure- flatfieldingerrorsforagivenrun.Notethattheseerrorswouldonly ments and specific data samples. In the LMCC, we only accept dependonDecbecausetheSDSSemploysadrift-scancamera,and object records classified as galaxies/non-PSF-like objects (tsObj thescan directionfor Stripe82isintheRA direction. After cor- filetagOBJC TYPE=3)orstars/PSF-likeobjects(tsObjfiletag rectingforthedeclination-dependent offsets, wethenre-compute OBJC TYPE=6),andtheobjectmusthavenochildobjects(tsObj themedianfractionalfluxoffsetsforeachfieldalongagivenrun filetagNCHILD=0;Stoughtonetal.(2002)).Wethenrequirethat (each SDSS field is 0.15◦ long in RA). This additional field-by- anobjectrecord satisfiesallofasetofconstraintsinatleastone fieldoffsetcorrectsforanytemporalvariationsinthephotometric waveband.Thefirstoftheseconstraintsisthataphotometricze- zeropointofagivenrun,whichareduetotransparency/extinction ropoint,calculatedusingthemethoddescribedinSection2.2,has changesoverthecourseofanominallyphotometricnight. beenappliedtotheobjectrecord,andthattheobjectrecordhasan Fluxoffsetsforacertainwavebandwereonlyappliedtoob- uncalibratedPSFmagnitude(tsObjfiletagPSFCOUNTS)brighter jectsassigned toabinwithat least9reference cataloguestarsin than21.5forthebandsu,g,randi,orbrighterthan20.5forthe ordertoguaranteetheaccuracyofthederivedfluxoffset.Inprac- z band. These limitswere chosen to ensure that any photometric tice,thisextrarestrictiononlyaffectsthephotometryofobjectsin measurementintheLMCChasasignal-to-noiseratioofatleast5 theuband,andinotherwavebandswhentheatmospherictrans- inatleastonewaveband.InTable2,welisttheremainingsetof parencyislow.Weuseaphotometriccalibrationtag(seeTable3) constraintstobesatisfiedinatleastonewavebandinorderforan tomonitorwhetherornotafluxoffsethasbeenappliedtothepho- objectrecordtobeincludedintheLMCC. tometryofaparticularobjectatacertainepochinaspecificwave Weapplyonefinalconstraintonthequalityofanobjectrecord band. ThefinaltsObjfilesusedforsubsequent analysestherefore in order to avoid the inclusion of cosmic ray events in our cata- haveboththesedeclination-dependentandfield-dependentfluxoff- logue. If an object record satisfies all of the above constraints in setsremovedformostobjectrecords.Wefindthatforthestandard one wave band only, then it is accepted only if the tsObj file tag SDSSruns,thefractionalfluxoffsetcorrections,whichwereferto FLAGS2forthatwavebanddoesnotcontainthehexadecimalbit asphotometriczeropoints,areabout1−2%,whichsetsthetypi- 0x1000000 (flag name MAYBE CR), the presence of which indi- calscaleoftheseresidualerrorsinthestandardSDSScalibration catesthattheobjectispossiblyacosmicray. procedures.Figure1showsthefractionalfluxoffsetcorrectionsas In order to construct the light-motion curves, we processed afunctionofSDSSfieldnumber(anarbitrarycoordinatealongRA each run in turn, starting with the 2005 runs which were closely assignedtoimagesectionsfromthesamerun)foratypicalphoto- spacedintime.Foreachobjectrecordinthecurrentrunsatisfying metricrun(94)andatypicalnon-photometricrun(5853). ourqualityandtypeconstraints,weusedthefollowingalgorithm toprocesstherecord: (i) Wedefineasubsetofobjectswithlight-motioncurvesfrom thecurrentcataloguethathavemeanpositionsinsidea1′ boxcen- tredonthepositionofthecurrentobjectrecord. (ii) Wecalculate an expected position at the epoch of thecur- erencecataloguestarswithanuncalibratedmagnitudebrighterthan18in rent object record for each object in the subset using one of two eachrun. methodsdependingonthenumberofepochsinthecorresponding Light andMotioninSDSSStripe82 5 Figure2.Toppanel:Greyscaleimageshowingthemaximumnumberofepochsinthelight-motioncurvesasafunctionofobjectposition.Bottompanel: Maximumnumberofepochsinthelight-motion curvesasafunctionofRAfora0◦.01wideslicethroughthegreyscale imagecentredatδ = −0◦.1 (continuousline;slicethroughtheNorthstrip)andforasimilarslicecentredatδ = 0◦.1(dashedline;slicethroughtheSouthstrip). Figure3.Left:PlotofRMSPSFmagnitudedeviationversusmeanPSFmagnitudefor10000randomPSF-likeobjects(stars)withatleast20goodrmagnitude measurements.Right:PlotofRMSexponentialmagnitudedeviationversusmeanexponentialmagnitudefor10000randomnon-PSF-likeobjects(galaxies) withatleast20goodrmagnitudemeasurements.Bothpanels:Plottedfunctions(continuouslines)arealloftheformf(m) = A+B exp (C (m−18)) wheremdenotes magnitude andA,B andC arefittedparameters. Forthelefthandpanel,A,B andC havevalues 17.3mmag,2.48mmagand1.00, respectively.Fortherighthandpanel,A,BandChavevalues30.8mmag,5.67mmagand1.01,respectively. light-motioncurve.Ifanobject hasalight-motioncurvewithsix findtheclosestobjecttothepositionofthecurrentobjectrecord2. epochsorless,thenthemeanpositionisusedfortheexpectedpo- Iftheclosestobjectlieswithin0.7′′,thenthecurrentobjectrecord sition.Otherwiseamean positionand proper motionarefittedto thelight-motioncurveandusedtocalculatetheexpectedposition oftheobjectattheepochofthecurrentobjectrecord. 2 Notethatanobjectrecordcontainsasingledatumforthecelestialcoor- dinates,calculatedfromtheastrometricsolutionfortheSDSSCCDcamera (iii) From the expected positions of the subset of objects, we atthecurrentepoch. 6 D.M. Bramichet al. isappended tothelight-motioncurveoftheclosestobject,other- wiseanewlight-motioncurveiscreatedcontainingonlythecurrent objectrecord. Sinceeachruncontainsatmostonemeasurementofanyobject,the abovealgorithmcanbeperformedinparallelforallobjectsfrom onerun. We choose to include both the PSF magnitude and exponential-profile magnitude (Stoughtonetal. 2002) in a light- motioncurveasameasureofanobject’sbrightnessineachwave bandateachepoch.ThePSFmagnitudeistheoptimalmeasureof thebrightnessofapoint-sourceobject,andhenceitissuitablefor studying starsand quasars. Photometry of extended objects, such asgalaxies,maybeperformedinavarietyofways,includingfit- tingan exponential profileto theobject image. Theadvantage of includingtheexponentialmagnitudeasopposedtoanyoftheother availableprofilemagnitudesisthatthedifferencebetweenthePSF (a) andexponential magnitudes, referredtoasaconcentration index, maybeusedasacontinuousobject-typeclassifier(Scrantonetal. 2002),independentofthemorerestrictivebinarySDSSclassifica- tion. AfterprocessingallStripe82data,theLMCCwastrimmedto h onlythoseobjectsthathaveameanpositionintherangeα=20.7 to 3.3h and δ = −1◦.26 to 1◦.26. This was desirable because the temporalcoverageistoosparseoutsidetheselimits.Thetotalarea ofskycoveredbytheLMCCistherefore∼249deg2.TheLMCC was also searched for photometric outliers using a 3σ-clip algo- rithmforoutlieridentification,andwefoundcleargroupsofout- liersclustered atspecificHJDs. Thetightclustering intimeindi- catesthatthesegroupsofoutliersaresimplyduetobadepochs(and notduetosomeastrophysicalprocess,likeaneclipseorflare),and henceweremovedthecorrespondingdatapoints,whichamounted to∼1%ofallepochs. InthetoppanelofFigure2,weplotagreyscaleimageshow- (b) ingthemaximumnumberofepochsinthelight-motioncurvesas a function of object position. One may clearly see that the light- Figure4.(a):Toprow:HistogramsofgalaxypropermotionsinRA(left) motioncurvesforobjectsintheoverlapregionsbetweenthenorth andDec(right)beforeastrometricrecalibration.Bottomrow:Densityplots and south strips contain approximately twice as many epochs as ofgalaxypropermotionsinRA(left)andDec(right)asafunctionofRA thelight-motioncurvesforobjectselsewhere.Inthebottompanel, beforeastrometricrecalibration. Theintensitybarhasunitsofnumberof we plot a one-dimensional slice through the greyscale image for galaxiesdeg−1mas−1yr.(b):ThesameasFigure4(a)butafterastrometric δ = −0◦.1andδ = 0◦.1tofurtherillustratethedependenceof recalibration. thenumberoflight-motioncurveepochsonRA. In Figure 3, we plot sample photometric RMS diagrams for like and non-PSF-like objects, respectively3. The RMS diagrams the r band. The left hand panel shows the RMS PSF magni- for the other wave bands are very similar except for the u band, tude deviation versus mean PSF magnitude for 10000 random where we achieve ∼23 mmag and ∼50 mmag RMS accuracy at PSF-like objects (MEAN OBJECT TYPE = 6; see Section 3.1) r∼18magforPSF-likeandnon-PSF-likeobjects,respectively. that have light-motion curves with at least 20 good r mag- nitude measurements. PSF-like objects are mainly stars with some contamination by quasars. Similarly, the right hand panel 2.4 FurtherAstrometricCalibrations shows the RMS exponential magnitude deviation versus mean exponential magnitude for 10000 random non-PSF-like objects Each SDSS imaging run was astrometrically calibrated against (MEAN OBJECT TYPE = 3) that have light-motion curves with the US Naval Observatory CCD Astrograph Catalog (UCAC; atleast20goodrmagnitudemeasurements.Non-PSF-likeobjects Zachariasetal. 2000), yielding absolute positions accurate to aremainlygalaxies. ∼45 mas RMS per coordinate (Pieretal. 2003). The accuracy is Overplotted on each RMS diagram is an empirical fit limitedprimarilybytheaccuracyoftheUCACpositions(∼70mas to the data using an exponential function of the form RMSattheUCACsurveylimitofR≃16),aswellasthedensity f(m) = A + B exp (C (m − 18)) where m denotes magnitudeandA,BandCarefittedparameters(whosevaluesare 3 TheupturnintheRMSamplitudeforstarsbrighterthanr ∼16isdueto reportedinthecaptionofFigure3).Thefittingwasdoneusingan acombinationoffactorsincluding:theappearanceofdetectableasymmet- iterative3σ-clipalgorithm(seeVidrihindexunderSection3.1).It riclowsurface-brightness structure(e.g.diffractionspikes)intheimages; isclearfromthesediagramsthatforther bandweareachieving theeffectofthelargeangularsizeoftheimagesonthedeterminationofthe ∼20mmagand∼30mmagRMSaccuracyatr∼18magforPSF- sky-background. Light andMotioninSDSSStripe82 7 0.15 nearest4 100suchgalaxiesarecalculatedandaddedtotheobject position.Thisprocedurerecalibratesthepositionsinthetargetrun tothereferenceframedefinedbythegalaxiesinthereferencerun. 0.1 ec) In Figure 5, we show example mean offsets in RA and Dec n (arcs 0.05 foobrsecravmederainc1o9lu9m8,nr1eqfuriormesrluanrgse9r4maenadn5o9f1fs8e.tsNtooticceortrheacttrfuonr 9th4e, o ecti meanpropermotionoftheUCACcalibrationstarsthanrun5918, Corr 0 observed in2005, since itis further away in timefrom when the ec Offset -0.05 refereAnfcteerrurenc5a8li2b3rawtinasgothbesearvsterdomine2tr0y0f5o.ralllight-motioncurves D intheLMCC,wehaverecreatedFigure4(a)asFigure4(b)using A/ R thesamesampleofgalaxies.Thehistogramsofthegalaxyproper -0.1 motionsinRAandDecarenowcentredaround∼0masyr−1 in- dicatingthatgalaxiesarestationaryintherecalibratedastrometric -0.15 40 35 30 25 20 15 10 5 0 systemoftheLMCC.Also,thelowerpanelsdemonstratethatthe RA (deg) RA dependence of the galaxy proper motions has been properly Figure5.PlotofthemeanoffsetsinRAandDecrelativetothereference removed. run5823asafunction ofRAforruns94(solidlines)and5918(dashed There is also some evidence that the galaxy proper motion lines). For both runs we show the offsets for camera column 1, and for scatter has been improved. The RMS deviation of the residuals run94,thelowerandupperlines correspondtotheRAandDecoffsets, aboutafourth-degreepolynomialfitineachofthebottompanelsof respectively.Notethatthisisbutasmallsectionofthefullstripe. Figure4(a)is5.4masyr−1forRAand5.2masyr−1forDec.This maybecomparedtotheimprovedRMSdeviationofthepropermo- tionsineachofthebottompanelsofFigure4(b)at4.8masyr−1 of UCAC sources. Theversion of UCACused to calibrateSDSS forRAand4.6masyr−1forDec. lacked proper motions, thus any proper motions based on SDSS TheSDSSpipelinesdonotsupplyuncertaintiesonthemea- positionswillbesystematicallyinerrorbythemeanpropermotion suredcelestialcoordinatesinthetsObjfiles,andsowehavedeter- oftheUCACcalibrators. minedanoisemodeldescribinghowtheastrometricnoisebehaves We illustrate the systematic errors inherent in the SDSS asafunction ofmagnitude. Thiswasdonebyexamining thedis- astrometry by considering galaxies in the magnitude range tribution of coordinate RMS for objects in the LMCC. However, 17 < r < 19.5 that have light-motion curves with at least wefoundthat theastrometricnoiseinthe2005observing season 20astrometricmeasurements.Forthissetofgalaxieswemeasure wasnoticeablylargerthaninpreviousseasons,mostlikelydueto thepropermotioninRAandDec,andwefindthatthegalaxiesare thelessstringentrestrictionsonobservingconditionsleadingtoa systematicallymovingwithpropermotionsoftheorderof10mas greaterspreadinPSFfull-widthhalf-maximumandobjectsignal- per year in both right ascension and declination! The problem is to-noise.Toproperlyaccountforthis,wedeterminedseparatenoise clearly evident in Figure 4(a) where we show histograms of the modelsforthepre-2005and2005observingseasons. galaxy proper motions in RA (top left hand panel) and Dec (top Todeterminetheastrometricnoisemodels,weselectallPSF- righthandpanel).ThetrendsofgalaxypropermotionwithRAare like objects (MEAN OBJECT TYPE = 6) with at least 20 good showninthebottomlefthandpanelforpropermotioninRAand epochs inr ineach of thepre-2005 and 2005 observing seasons. inthebottomrighthandpanelforpropermotioninDec. FortheseobjectswederivethedistributionofcoordinateRMSde- Proper motionsbased onmulti-epochSDSSdatacanbeim- viations for 0.5 mag bins for both pre-2005 and 2005 data, and provedbyrecalibratingeachSDSSimagingrunagainstareference fitapeakanddispersionforeachbin.InFigure6(a),weplotthe SDSSrun,ratherthanusingtheUCACcataloguepositions.Theac- peak RA RMS deviation for each magnitude bin versus r mag- curacyoftherelativeastrometrybetweenrunsis∼20masRMSper nitude for pre-2005 data (filled circles) and 2005 data (open cir- coordinate(Pieretal.2003),farsuperiortotheaccuracyoftheab- cles; offset by 0.15 mag to the left for clarity). We obtain very solutepositions,duebothtothemoreaccuratecentroids,aswellas similar results for the Dec coordinate. We fit the peak data as a thefargreaterdensityofcalibrators,forSDSScomparedtoUCAC. functionofmagnitude mviaanexponential functionof theform Further,byusinggalaxiesascalibrators,thepropermotionscanbe f(m) = A+B exp (C (m−18))whereA,BandCarefitted tiedtoanextragalacticreferenceframeandarethusinertial.Thisis parameters,andplotthefittedmodelsinFigure6(a)ascontinuous themethodusedinthispapertocorrectthesystematicSDSSastro- anddashedcurvesforpre-2005and2005data,respectively. metricerrorsillustratedinFigure4(a).However, itisappropriate Thefollowingequationsrepresentourfinaladoptedastromet- tomentionthatthepositionalsystemofthecalibratorsstillrefers ricnoise model, based on theexponential model fitsfor both the totheepochsgivenbyUCAC. RAandDeccoordinates: Allimagingrunsalongthenorthstriphavebeenrecalibrated Pre-2005: σα(t)=σδ(t)=32.0+0.430exp(1.34(m(t)−18)) using run 5823 as the reference run. All imaging runs along the south striphavebeen recalibrated against run 4203, after first re- 2005: σα(t)=σδ(t)=35.4+0.783exp(1.09(m(t)−18)) calibratingrun4203againstrun5823.Inordertorecalibrateatar- (1) getrun,offsetsinRAandDecarecalculatedformatching“clean” galaxiesinthereferencerun(rejectinggalaxiesaffectedbyprob- where σα(t)and σδ(t)are the uncertainties on themeasured ce- lemswithdeblending,pixelinterpolation,multiplematches,etc.in eitherrun).Onlygalaxiesinthemagnituderange17 < r < 19.5 4 Nearestincoordinateparalleltothescandirection,rightascension–the areusedtoavoidlargegalaxieswithpoorlydefinedcentroids.For coordinate perpendicular tothescandirection, declination, isignored, as eachobjectinthetargetrun,themeanoffsetsinRAandDecforthe thelengthofthebinningwindowisalwayslargerthanthewidthofascan. 8 D.M. Bramichet al. (a) (b) Figure6.(a):PlotofthepeakRARMSdeviation in0.5magbinsversus r magnitude forPSF-likeobjects (stars)forpre-2005data (filledcircles) and 2005data(opencircles;offsetby0.15magtotheleftforclarity).(b):PlotofthepeakRARMSdeviation in0.5magbinsversusr magnitudefornon- PSF-likeobjects(galaxies)forpre-2005data(filledcircles)and2005data(opencircles;offsetby0.15magtotheleftforclarity).Bothpanels:Errorbars representthedispersioninthedistributionofRMSdeviations ineachmagnitudebin.Plottedfunctions(continuousanddashedcurves)arealloftheform f(m) = A + B exp (C (m − 18))wheremdenotesmagnitudeandA,BandCarefittedparameters. lestialcoordinatesα(t)andδ(t),respectively,attimet,andm(t) responding object. TheASCII light-motion curve filecontains a represents the brightest PSFmagnitude out of the five photomet- header linedescribing thecolumnmeanings, followedby exactly ricmeasurementsattimet.Evidencethatthisnoisemodelisvalid five rows for each epoch (one row for each wave band) in strict comesfromthefactthatthedistributionofχ2 perdegreeoffree- timeorder.Allfivewavebandmeasurementsareincludedforcom- domofthepropermotionfitfortheHLC(Section3.1)ispeakedat pleteness, even though it ispossible that at any one epoch, up to avalueof∼1.1.Notethatastrometricuncertaintiesarenotgivenin fourwavebandmeasurementsmaynotsatisfythequalitycriteria theLMCCandshouldbeobtainedviaEquation1. describedinSection2.3.InTable3wedescribethecolumnsthat In Figure 6(b), we plot the results of the same co- makeupalight-motioncurvefromtheLMCC. ordinate RMS deviation analysis for non-PSF-like objects Figure 7 shows some clear examples of photometric vari- (MEAN OBJECT TYPE = 3) with at least 20 good epochs in r ability and motion from the LMCC. Figure 7(a) presents the in each of the pre-2005 and 2005 observing seasons. It is clear lightcurve in r (upper points) and g (lower points) of the large- from the plots in Figure 6 that we are achieving ∼32 mas and amplitude long-period variable star SDSS J220514.58+000845.7, ∼35masRMSaccuracyatr ∼18magforstarsforpre-2005and most likely a Mira variable (Watkinsetal. 2008). Figure 7(b) 2005data,respectively,and∼35masand∼46masRMSaccuracy presents the motion curve of the known ultracool white dwarf atr∼18magforgalaxiesforpre-2005and2005data,respectively. SDSSJ224206.19+004822.7 (Kilic´etal.2006).Bothpanelsillus- tratethedramaticincreaseintemporal samplingproduced bythe startoftheSDSS-IISupernovaSurveyin2005. 2.5 CatalogueFormat The LMCC exists as eight tar files, one for each hour in RA from 20h to 4h. Each tar file contains 60 subdirecto- 3 THEHIGHER-LEVELCATALOGUE ries corresponding to the minutes of RA, and the light-motion 3.1 CatalogueDescription curves are stored in these directories based on their mean RA coordinates. The LMCC contains 3700548 light-motion curves, The HLC supplies a set of 229 derived quantities for each light- 2807047 of which have at least 20 epochs. The tar files motioncurveintheLMCC.Thesequantitiesareaimedatdescrib- (∼29.5Gbcompressed) maybeobtainedbywebdownloadfrom ingthemeanmagnitudes, photometricvariabilityandastrometric http://das.sdss.org/value added/stripe 82 variability/SDSS 82 public/. motionoftheobjectsintheLMCC,andtheyarecalculatedusing Light-motion curve plotting tools written in IDL may also be onlylight-motioncurveentriesthatsatisfythequalityconstraints downloadedfromthesamewebsite. fromSection2.3.ThosequantitiesintheHLCrelatedtophotom- Asinglelight-motioncurveisstoredasanASCIIfilewitha etryaredescribedinTable4,whilethoserelatedtoastrometryare name constructed from theunweighted mean position of the cor- describedinTable5. Light andMotioninSDSSStripe82 9 Table3.Thelistofcolumnsthatmakeupalight-motioncurveintheLMCCalongwithabriefdescription. ColumnNumber ColumnName Type Description 1 Run INTEGER SDSSimagingrun 2 Rerun INTEGER VersionoftheSDSSframespipelineusedtoprocessthedata 3 Field INTEGER SDSSfieldnumberalongastrip 4 Camcol INTEGER SDSScameracolumn 5 Filter INTEGER SDSSwaveband(0=u,1=g,2=r,3=i,4=z) 6 ObjectType INTEGER Objectclassification(3=Galaxy,6=Star) 7 RA DOUBLE RightascensionJ2000(deg) 8 Dec DOUBLE DeclinationJ2000(deg) 9 Row FLOAT CCDrowcoordinate(pix) 10 Column FLOAT CCDcolumncoordinate(pix) 11 HJD DOUBLE HeliocentricJuliandate(days) 12 PSFLuptitude FLOAT PSFmagnitude(lup)∗ 13 PSFLuptitudeError FLOAT UncertaintyonthePSFmagnitude(lup)∗ 14 PSFFlux FLOAT PSFfluxnormalisedbythefluxfromazero-thmagnitudeobject 15 PSFFluxError FLOAT UncertaintyonthePSFflux 16 ExpLuptitude FLOAT Exponentialmagnitude(lup)∗ 17 ExpLuptitudeError FLOAT Uncertaintyontheexponentialmagnitude(lup)∗ 18 ExpFlux FLOAT Exponentialfluxnormalisedbythefluxfromazero-thmagnitudeobject 19 ExpFluxError FLOAT Uncertaintyontheexponentialflux 20 Sky FLOAT Skybackgroundbrightness(luparcsec−2)∗ 21 SkyError FLOAT Uncertaintyontheskybackgroundbrightness(luparcsec−2)∗ 22 FWHM FLOAT Full-widthhalf-maximumofthePSF(arcsec) 23 PhotometricCalibrationTag INTEGER Flagindicatingthephotometriccalibrationstatus(1=Calibrated,0=Uncalibrated) 24 PhotometricZeroPoint FLOAT Fractionalfluxoffsetappliedtothefluxvalues 25 Flag1 LONG Objectflags(tsObjfiletagFLAGS) 26 Flag2 LONG Moreobjectflags(tsObjfiletagFLAGS2) 27 AstrometricCalibrationTag INTEGER Flagindicatingtheastrometriccalibrationstatus(1=Calibrated,0=Uncalibrated) 28 RACorrection DOUBLE Correctionappliedtorightascension(deg) 29 DecCorrection DOUBLE Correctionappliedtodeclination(deg) ∗SeeLupton,Gunn&Szalay(1999)andStoughtonetal.(2002)forthedefinitionofaluptitude. In Table 4, if a tag name is associated with a 5-element ar- ThequantityMEAN CHILDinTable4isanunweightedmean ray,thenthe5valuesrepresentthedescribedquantityforeachof of whether the child object bit is set or not. In other words, this the five SDSS wave bands in the order u, g, r, i and z. When a quantityhasavalueof1if,atallepochs,theobjectresultsfromthe certain wave band has insufficent “good” light-motion curve en- deblendingofaparentobject,avalueof0iftheobjectwasnever triestocalculateaparticularquantity,avalueofzeroisstored(this theresultofthedeblendingofaparentobject,andavaluebetween also applies to Table 5). For instance, the first value in the array 0and1otherwise. MEAN PSFMAGissettozeroforanylight-motioncurveswithno The Galactic extinctions described by EXTINCTION in Ta- “good”entriesfortheuband. ble 4 are derived using the maps of dust column density from AllquantitiesinTable4withCLIPattheendofthetagname Schlegeletal.(1998). arecalculatedusinga4σ-clipalgorithmthatrejectsonlytheworst Foreclipseandflaredetectioninlightcurvesweincludethe outlieratanyoneiteration,andterminateswhennomoreoutliers statisticsECL STATand FLARE STAT(Table4)in theHLC.In areidentified.Similarly,allquantitiesinTable4withITERatthe calculatingthesevalues,weassumethatanyeclipse/flareeventin end of the tag name are calculated using the iterative procedure a light curve will include only one photometric data point since described in Stetson (1996) to dynamically reweight data points the time elapsed between consecutive scans is at least one day. basedon thesizeof theresidualsfromthemean. Boththesesets Hence, for each photometric data point (using PSF magnitudes ofquantitieshavebeendesignedtobemorerobustagainstoutliers only),wecalculatethestatisticS2,basedonamatchedfilterfrom thanasimpleinversevarianceweightedmean. Bramichetal.(2005),anddefinedby: star/gTahlaexySDseSpSarpathiootno,mtheetriqcuapliiptyelionfewphericfohrmissinatimmaotreplhyolroeglaitceadl S2 ≡ χ2cons2t−χ2out (2) `χout/ν´ toseeingandskybrightness.Whiletheaccuracyisverygoodfor brightobjects,therecanbeconfusionforfaintobjects.Thequan- whereχ2constisthechi-squaredvalueofaconstantfitforeachwave tityMEAN OBJECT TYPEinTable4isanunweightedmeanofthe bandtothewholelightcurve,andχ2out andν arethechi-squared SDSSobjecttypeclassification.Henceithasavalueof3iftheob- andnumber ofdegreesfreedom,respectively,ofaconstantfitfor jectisclassifiedasagalaxyatallepochs,avalueof6iftheobject eachwavebandtotheout-of-eclipse/flarelightcurve.Inorder to is classified as a star at all epochs, and a value between 3 and 6 avoidfalsepositives,weonlycalculateS2 forepochswithphoto- otherwise.ThereliabilityofMEAN OBJECT TYPEforobjecttype metricdatapointsthatare“good”inatleasttwowavebands.The classification depends on the reliability of the SDSS object type adopted values of ECL STAT and FLARE STAT are then taken classifier and the number of epochs at which the object was ob- to be the largest values of S2 for photometric data points fainter served. andbrighter,respectively,thanthemean.Wealsorecordthecorre- 10 D.M. Bramichet al. Table4.Thelistofderivedquantitiesrelatedtophotometrythatarestoredforeachlight-motioncurveintheHLC.Thesequantitiesarecalculatedusingonly light-motioncurveentriesthatsatisfythequalityconstraintsfromSection2.3. TagNameInHLC Type Description LCNAME STRING Light-motioncurvefilename IAUNAME STRING ObjectnameinSDSSDataRelease6(InternationalAstronomicalUnionapprovedformat)† NGOODEPOCHS 5×INTEGER Numberofgoodphotometricdatapoints MEANPSFMAG 5×FLOAT InversevarianceweightedmeanofthePSFmagnitudes MEANPSFMAGERR 5×FLOAT UncertaintyonMEANPSFMAG MEANEXPMAG 5×FLOAT Inversevarianceweightedmeanoftheexponentialmagnitudes MEANEXPMAGERR 5×FLOAT UncertaintyonMEANEXPMAG RMSPSFMAG 5×FLOAT Root-mean-squaredeviationofthePSFmagnitudes RMSEXPMAG 5×FLOAT Root-mean-squaredeviationoftheexponentialmagnitudes CHISQPSFMAG 5×FLOAT Chi-squaredofthePSFmagnitudes CHISQEXPMAG 5×FLOAT Chi-squaredoftheexponentialmagnitudes NGOODEPOCHSPSFCLIP 5×INTEGER NumberofgoodPSFmagnitudesafter4σ-clipping∗ NGOODEPOCHSEXPCLIP 5×INTEGER Numberofgoodexponentialmagnitudesafter4σ-clipping∗ MEANPSFMAGCLIP 5×FLOAT 4σ-clippedinversevarianceweightedmeanofthePSFmagnitudes∗ MEANPSFMAGERRCLIP 5×FLOAT UncertaintyonMEANPSFMAGCLIP∗ MEANEXPMAGCLIP 5×FLOAT 4σ-clippedinversevarianceweightedmeanoftheexponentialmagnitudes∗ MEANEXPMAGERRCLIP 5×FLOAT UncertaintyonMEANEXPMAGCLIP∗ RMSPSFMAGCLIP 5×FLOAT Root-mean-squaredeviationofthe4σ-clippedPSFmagnitudes∗ RMSEXPMAGCLIP 5×FLOAT Root-mean-squaredeviationofthe4σ-clippedexponentialmagnitudes∗ CHISQPSFMAGCLIP 5×FLOAT Chi-squaredofthe4σ-clippedPSFmagnitudes∗ CHISQEXPMAGCLIP 5×FLOAT Chi-squaredofthe4σ-clippedexponentialmagnitudes∗ MEANPSFMAGITER 5×FLOAT IteratedinversevarianceweightedmeanofthePSFmagnitudes∗ MEANPSFMAGERRITER 5×FLOAT UncertaintyonMEANPSFMAGITER∗ MEANEXPMAGITER 5×FLOAT Iteratedinversevarianceweightedmeanoftheexponentialmagnitudes∗ MEANEXPMAGERRITER 5×FLOAT UncertaintyonMEANEXPMAGITER∗ PERCENTILE05PSF 5×FLOAT 5thPercentileofthecumulativedistributionofPSFmagnitudes PERCENTILE50PSF 5×FLOAT MedianofthePSFmagnitudes PERCENTILE95PSF 5×FLOAT 95thPercentileofthecumulativedistributionofPSFmagnitudes PERCENTILE05EXP 5×FLOAT 5thPercentileofthecumulativedistributionofexponentialmagnitudes PERCENTILE50EXP 5×FLOAT Medianoftheexponentialmagnitudes PERCENTILE95EXP 5×FLOAT 95thPercentileofthecumulativedistributionofexponentialmagnitudes TIMESPAN FLOAT Timespanofthelight-motioncurve(d) MEANOBJECTTYPE FLOAT Unweightedmeanoftheobjectclassification∗ MEANCHILD FLOAT Unweightedmeanofwhetherthechildbitissetornot∗ EXTINCTION 5×FLOAT Galacticextinction(mag)∗ ECLREDCHISQOUT FLOAT Reducedchi-squaredout-of-eclipseforthePSFmagnitudes∗ ECLSTAT FLOAT EclipsestatisticforthePSFmagnitudes∗ ECLEPOCH DOUBLE EclipseepochasaheliocentricJuliandate(d)∗ FLAREREDCHISQOUT FLOAT Reducedchi-squaredout-of-flareforthePSFmagnitudes∗ FLARESTAT FLOAT FlarestatisticforthePSFmagnitudes∗ FLAREEPOCH DOUBLE FlareepochasaheliocentricJuliandate(d)∗ STETSONINDEXJPSF 5×FLOAT StetsonJ-indexforthePSFmagnitudes∗ STETSONINDEXJEXP 5×FLOAT StetsonJ-indexfortheexponentialmagnitudes∗ STETSONINDEXKPSF 5×FLOAT StetsonK-indexforthePSFmagnitudes∗ STETSONINDEXKEXP 5×FLOAT StetsonK-indexfortheexponentialmagnitudes∗ STETSONINDEXLPSF 5×FLOAT StetsonL-indexforthePSFmagnitudes∗ STETSONINDEXLEXP 5×FLOAT StetsonL-indexfortheexponentialmagnitudes∗ VIDRIHINDEXPSF 5×FLOAT VidrihindexforthePSFmagnitudes∗ VIDRIHINDEXEXP 5×FLOAT Vidrihindexfortheexponentialmagnitudes∗ ∗Seetextformoredetail. †Maybeempty. spondingvaluesofχ2out/νforECL STATandFLARE STATinthe Our final measure of light curve variability is via a quan- quantitiesECL REDCHISQ OUTandFLARE REDCHISQ OUTre- tity called the Vidrih variability index. RMS magnitude devia- spectively,alongwiththeepochoftheputativeeclipse/flareevent tions for non-variable lightcurves plotted versus mean magnitude inECL EPOCHandFLARE EPOCHrespectively. m in a given wave band (referred to as an RMS diagram) are InTable4,theStetsonvariabilityindicesJ,KandL(Stetson scattered around a three parameter empirical exponential func- 1996) for both the PSFand exponential magnitudes are storedin tion f(m) = A + B exp (C (m − 18)), while thequantitieswithtagnamesstartingSTETSON INDEX.Wechose the RMS magnitude deviation of variable sources is expected to therbandasthecomparisonwavebandandconsequentlythethird benoticeably larger.Weconsider twolightcurve samples, that of elementineachofthesesixquantityarraysissettozero. PSF-likeobjects(MEAN OBJECT TYPE = 6)andnon-PSF-likeob-