Draftversion1.0 ATLAS NOTE February14,2015 Level-1 Data Driver Card Design Review Report 1 T.Alexopoulosa,C.Bakalisa,P.Gkountoumisa,G.Iakovidisb,A.Koulourisa 2 aNationalTechnicalUniversityofAthens,Greece 3 bBrookhavenNationalLaboratory,USA 4 Abstract 5 InthisdocumentwedescribetheoveralldesignandspecificationsofthefinalLevel-1Data 6 Driver Card for the electronics review process of the New Small Wheel. Furthermore, the 7 roadmap to the final board through out the evaluation of several prototype cards will be 8 presented along with the various tests that have to be performed in order to validate the 9 proposeddesign. Finally,anupdatedtimescheduleandthemanpowerplanneededtocover 10 thedesignandproductionoftheLevel-1DataDriverCardswillbegiven. 11 ©Copyright2015CERNforthebenefitoftheATLASCollaboration. ReproductionofthisarticleorpartsofitisallowedasspecifiedintheCC-BY-3.0license. February14,2015–12:37 DRAFT 1 Contents 12 1 Introduction 3 13 2 Overalldesignandspecifications 5 14 2.1 Architecture,3Dmodels,dimensions,components-connectors,toolingused . . . . . . 5 15 2.2 Boardarchitectureandmaterials(Layerstack,Differentialwidth/gap,Differentialimpedance, 16 FR4,etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 17 2.3 Powerdistributionandconsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 18 2.4 LocationoftheL1DDCcardsondetectorandservicesrouting . . . . . . . . . . . . . . 13 19 2.4.1 Micromegascardplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 20 2.4.2 sTGCcardplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 21 2.4.3 Micromegasservicesrouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 22 2.4.4 sTGCservicesrouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 23 2.5 SpecificdesignforMMandsTGC,sharemostofthedesign . . . . . . . . . . . . . . . 16 24 3 Specificationofthefunctionstobeperformed 18 25 3.1 Connectivityandcompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 26 3.1.1 InterfacewithFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 27 3.1.2 InterfacewithADDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 28 3.1.3 InterfacewithFELIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 29 3.2 GBTxASICbankconnectivityandconfiguration . . . . . . . . . . . . . . . . . . . . . 21 30 4 Tests 21 31 4.1 Validationinradiationandmagneticfield . . . . . . . . . . . . . . . . . . . . . . . . . 23 32 4.2 Reliability-SEUdetection/correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 33 4.3 Debuggingtoolsandprograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 34 4.4 ProceduresforthefinalL1DDCtests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 35 5 L1DDCPrototype1 23 36 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 37 5.2 DesignchoicesandDimensions(Layerstack,Differentialwidth/gap,Differentialimpedance, 38 FR4etc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 39 5.3 PowerdistributionandPowerconsumption(Componentdescription,Rampupsequence, 40 VoltageLevels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 41 5.4 Componentdescriptionandspecifications(FPGA,EthernetPHY,SFP) . . . . . . . . . . 33 42 5.5 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 43 5.5.1 Clockdomain(internalandexternalclocks) . . . . . . . . . . . . . . . . . . . . 38 44 5.5.2 ConnectivitywithFEs,ADDCandDAQ . . . . . . . . . . . . . . . . . . . . . 41 45 5.6 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 46 5.6.1 CommunicationProtocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 47 5.6.2 Systemcore-Userlogic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 48 5.7 Adapterboards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 49 5.8 Testsanddebugging(Toolsandapplicationsused) . . . . . . . . . . . . . . . . . . . . . 48 50 5.9 Issues-errorstobecorrected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 51 5.10 TestswithVMMequippedfrontendprototypes . . . . . . . . . . . . . . . . . . . . . . 53 52 6 Prototype2&3androadmaptofinalboard 54 53 7 Timescheduleandmanpower 55 54 February14,2015–12:37 DRAFT 2 Appendices 57 55 A AdaptationoffirmwaretoArtix7FPGA 57 56 February14,2015–12:37 DRAFT 3 1 Introduction 57 HighspeedserialdatatransmissionhasbecomethenormindataacquisitionsystemsofHEPexperiments 58 followingthedevelopmentofcommercialhigh-speedserialprotocolssuchasPCIexpress,10GEthernet, 59 infiniband, etc. serializers and deserializers are the key components of such systems. Off the shelf 60 components(COTS)aretypicallynotsufficientlyradiationresistantand, inparticular, quitesusceptible 61 to single event upsets (SEU) caused by energetic (E > 20MeV) hadrons. For this reason the CERN 62 microelectronicsgrouphasbeendevelopingaradiationhardchipset,theGigaBitTransceiver(GBT)[1]. 63 TheGBTchipsetconsistsofa4.8Gb/sserializer/deserializerASIC,aversatileopticaltransceiveralong 64 with a laser driver IC, a pin diode receiver IC and a Slow Controls Adaptor (SCA). This separation of 65 functions allows different combinations of transceivers, optical drivers, laser sources, and photodiodes 66 to be used according to the needs of a particular application. Event data, Timing, Trigger and Control 67 (TTC) signals, front-end configuration, and DCS data can be exchanged via a single fibre pair between 68 thefront-endandUSA15usingtheGBT.ItisassumedthattheUSA15endisimplementedinanFPGA 69 ratherthanaGBTASIC. 70 TheGBTASICcanbeviewedasmultiplexinganumberofseriallinks,calledE-links,with80,160,or 71 320Mb/sratesontoonefibrebytransferring2,4,or8bitsperE-linkviaan80-bitword(optionally116 72 bits) every 25ns, for an aggregate GBT bandwidth of 3.2Gb/s. One e-link, consisting of three pairs of 73 differential lines (6 wires) being the clock (Clk+ and Clk-), the Data In (Din+ and Din-) and Data Out 74 (Dout+andDout-). TheelectricallevelsfollowtheLVDSstandard. 75 The Slow Control Adapter (SCA) ASIC provides an interface to several protocols needed for the front- 76 endconfigurationandmonitoring. TheGBT-SCAimplementsdifferentbusesliketheJTAGandtheI2C 77 which allow the configuration of the ASICs while features an ADC for monitoring input signals. The 78 SCAfeaturesaspecificE-linkforthedatacommunicationwiththeGBTx. Bothmicromegas(MM)and 79 small Thin Gap Chambers (sTGC) place an SCA on each front-end board. Although this results in a 80 substantial number of SCAs, it is far more reliable, more compact and less expensive than connectors 81 andcablestoamorecentrallocation. 82 TheLevel-1DataDriverCard(L1DDC)cardwillserveasanintermediatestagebetweentheFEboards 83 and the Felix interface system. The two technologies of NSW sTGC and Micromegas (MM) use the 84 samebuildingblocksforthereadoutL1DDCcards. 85 The micromegas system of the NSW needs to provide muon segment candidates to the Sector Logic 86 (SL) within the Level-1 latency of 41 clock ticks of 40MHz. This corresponds to a latency of 1025ns. 87 OncethesegmentisconfirmedbytheSLthetrackingprimitiveshavetobereadoutandprocessed. The 88 micromegassystemconsistsof∼2.1Mchannels. 89 Thefront-endASICprovidingthetriggerandtrackingprimitivesistheVMM.Forthemicromegas,eight 90 VMMASICswillbeinstalledinafront-endboardcalledMMFE.Thiscreatesafront-endboardcapable 91 ofreading512micromegasreadoutstrips. TheMMFE,apartoftheVMMASIC,willfeatureaGBT-SCA 92 for the configuration, calibration and monitoring of the MMFE. Moreover a custom readout ASIC will 93 be integrated in the MMFE capable to gather, format and serially transmit the information of the eight 94 VMMintoasinglee-linkoutput. Aseparatee-linkwillbeusedfortheconfigurationpath. TheMMFEis 95 alsocapableofdrivingtheARTsignalstoaseparatetransmissionlineforeveryLHCbunchcrossingof 96 25ns. AllthecomponentsoftheMMFEareinstalledinaPCBof215×60mm2. TheARTsignalsofthe 97 eight MMFE boards are multiplexed into a trigger board called ART Data Driver Card (ADDC) which 98 is not described in this document. The readout data of eight MMFE, are multiplexed through e-links 99 intoadatadrivercardcalledLevel-1DataDriverCard(L1DDC).TheL1DDCfeaturesoneGBTx. Itis 100 capableofdrivingtheLevel-1datathroughtheGBTxintoafibertoanetworkinterfacecalledFELIX.It 101 is also capable to configure the ADDC and the MMFE through dedicated to configuration E-links. The 102 L1DDC is built in a PCB of the same dimensions like the ADDC. An overview representation of the 103 February14,2015–12:37 DRAFT 4 NSWelectronicscomplexisshowninFigure1. ThetotalnumberofL1DDCboardsis1024(512boards 104 forthemicromegasdetectorsand512boardsforthesTGCdetectors). 105 BE detector electronics (USA15) Figure1: OverviewrepresentationoftheNSWmicromegaselectronicscomplexity. TheMMFEfrontend cardsareconnectedtotheL1DDC(lightgreen)cardsviae-Links. The front end electronics will be installed on the micromegas wedges radially along both sides. This 106 provides a way of equalizing the load on both sides of the detector and the cable routing. Figure 2 107 showsamultiplexingdiagramofthemicromegasfrontendelectronicsboards. TheL1DDCimplements 108 the configuration e-links uniform along the radial direction with a bit-rate of 80Mbps e-links while the 109 readout e-links, with a bitrate of 160Mbps for the four outer MMFE and 320Mbps for the inner four. 110 Thisisduetothehigherparticleratewhichrequiresahigherbandwithintheinnerradiusofthedetector. 111 2 Overall design and specifications 112 In thissection thefinal L1DDCboard will bedescribed. Thereis a detaileddescription ofthe architec- 113 ture of the board and the components that will be used, the estimation of power consumption and the 114 placement on the detector side. Also, it is mentioned the design choices (like layer stack, differential 115 impedance,differentialwidth/gap)andthematerialsthatwillbeusedinordertofabricatethefinalboard 116 (dielectricconstant,FR4). 117 2.1 Architecture,3Dmodels,dimensions,components-connectors,toolingused 118 Thereisalimitationoftheoverallavailablespacefortheplacementoftheboardtothedetector. Because 119 ofthisheightlimitationthefinalboardwasdecidedtohaveconnectorsonlyintheonesideoftheboard 120 and not in both sides. The other side will accommodate only the components that need to be cooled 121 through the cooling channel. The final board will be 200mm in length, 50mm in width and about 122 18.4mm in height. A representation of the placement of the L1DDC board on the detector is shown in 123 Figure 3. In this figure in the upper margin of the detector is placed the L1DDC board. In the top side 124 of the board the connectors are visible (the power connector, the miniSAS connectors and the VTRx 125 transceiver) and on the bottom side the GBTx ASIC along with the DC-DC converter, the foam that 126 February14,2015–12:37 DRAFT 5 MMFE e r br fi e br fi 80 Mbps e-Link 160 Mbps e-Link 320 Mbps e-Link 160 Mbps twin-ax Figure2: Frontendelectronicsmultiplexingdiagram. Thefrontend(MMFE)electronicscardsarecon- nected via e-Links to L1DDC and ADDC cards. In addition a communication is established between L1DDCandADDCcards. TheoutputofthereadoutcardsisconnectedtotheFELIXdistubutionsystem viafiberopticscables. keepsintouchtheIntegratedCircuitswiththecoolingchannelandfinallythegroundpinsthatholdthe 127 boardonthedetector. Onthebottomside,ontopofthehotwateroutputisplacedthemicromegasFront 128 Endboard(MMFE8). 129 ThefinalL1DDCboardwillaccommodatethefollowingbasiccomponents: theGBTxASIC,theVTRx 130 optical transceiver, the DC-DC converter and the connectors (for power and data). The GBTX is a 131 radiation tolerant chip that can be used to implement multi-purpose high speed (3.2 − 4.48Gb/s user 132 bandwidth) bidirectional optical links for high-energy physics experiments, see Figure 4 where the top 133 andbottomviewsareshown. 134 ItwillprovidethreedistinctdatapathsforTimingandTriggerControl(TTC),DataAcquisition(DAQ) 135 and Slow Control (SC) information to the front end electronics and the ADDC boards as shown in Fig- 136 ure 5. The GBTX can be electrically interfaced with the on detector electronics using different topolo- 137 gies. The simplest one consists of interconnecting the GBTX and a front-end device through a parallel 138 lane while the most sophisticated allows the GBTX to interface simultaneously with up to 40 front-end 139 devices via duplex local Electrical serial links (E-links). The use of one single parallel lane, the use 140 of multiple parallel lanes or individual serial connections are valid subsets of the E-link programmable 141 features. EachE-linknormallyconsistsofthreesignallines(differentialpairs): 142 • DifferentialClockline(dClk+/dClk-): ClockdrivenbyGBTXtofront-endmodule. 143 • DifferentialDownlinkdataoutput(dOut+/dOut-): DatalinefromGBTXtothefront-endmodule. 144 February14,2015–12:37 DRAFT 6 Figure 3: On detector placement of the L1DDC board; top board on the side of MM wedge is shown. TheboardbetweenthetworeadoutpanelsofthemicromegaswedgeistheFrontEndMMFE-8. Also,in thisfigure,thecrosssectionofthevariouscables(High&LowvoltageandFibercables)runningalong thecoolingcutoutsisshown. (a)TopsideofGBTx (b)BottomsideofGBTx Figure4: TheGBTxASIC Figure5: OverallfunctionalityoftheGBTXASIC • DifferentialUplinkdatainput(dIn+/dIn-): Datalinefromfront-endmoduletoGBTX [6] 145 Figure 6 represents the general interconnection topology between the GBTX chip and the Front End 146 electronics using E-links. For each group the E-Link clock signals (dClk+/dClk-) can be programmed 147 February14,2015–12:37 DRAFT 7 Figure6: ElinksbetweenthefrontendboardsandtheGBTx. independently to get any of the following frequencies: 40MHz, 80MHz, 160MHz or 320MHz. If, for 148 example,theE-Linkclocksareprogrammedtobe40MHzforthe2×datarate(80Mb/s)thelinksand 149 itsassociatedclocksbasicallyrunasaDoubleDataRate(DDR)connectionwiththeclockhavingrising 150 andfallingtransitionsoccurringinthemiddleofthebitperiodasshowninFigure7 [6]. Figure7: E-Linkclocksanddataoutputs. February14,2015–12:37 DRAFT 8 The connectivity of the L1DDC board with the on detector electronics (Front Ends and ADDC boards) 151 willbethroughtheMolex36pminiSASconnectors(PartNo75783-0132)asshowninFigure8aand3M 152 miniSAScables(PartNo8F36-AAA105)asshowninFigure8b [9]. Thesmallsizeoftheconnectors 153 (8.47mmheightand17.8mmwidth)isshowninFigure9aandTable9balongwiththehighlyroutable 154 cables is the reason for choosing them for the update of the NSW. The miniSAS 36 position cable 155 can accommodate up to 4 receiving and 4 transmitting differential pairs, as long as 4 receiving and 4 156 transmitting pins are dedicated to sidebands. The L1DDC board will communicate with the Read Out 157 CompanionASIC(ROC)ofthefront-endboardswhichistheassignedchiptocollectthedatafromthe 158 VMMs and transmit them to the L1DDC. The front-ends are equipped with a second ASIC (the Slow 159 ControlAdapterSCA)whichisresponsibleforcontrollingandmonitoring. BothASICs(ROCandSCA) 160 mustcommunicatewiththeL1DDCthroughoneE-linkeach. 161 (a)Molex36positionMiniSASconnector. (b)3Mmini36positionminiSAScable. Figure8: MiniSASconnectorandcable (b)CircuitSize (a)MiniSASdimensions. Figure9: MiniSASconnectordimensionsandspecifications ThegeneralarchitectureoftheGBTXASICanditsmainexternalconnectionsaredisplayedinFigure10. 162 TheGBTXconnectstotheGBLDlaserdriverASICandtotheGBTIAtrans-impedanceamplifierASIC. 163 TheClockandDataRecovery(CDR)circuitreceiveshighspeedserialdatafromtheGBTIA.Itrecovers 164 andgeneratesanappropriatehighspeedclocktocorrectlysampletheincomingdatastream. Theserial 165 data is then de-serialized (that is converted to parallel form) and then DECoded, with appropriate error 166 corrections,andfinallyDeSCRambled(DSCR). 167 In the transmitter part the data to be transmitted is SCRambled (SCR), to obtain DC balance, and then 168 encodedwithaForwardErrorCorrection(FEC)code,beforebeingserializedandsendtotheGBLDlaser 169 driver. TheconfigurationoftheGBLDcanbeperformedviaasimplifiedI2C-Lightconnectionfromthe 170 GBTX. A clock manager circuit takes care of generating and manage the different high speed and low 171 speed clocks, needed in the different parts of the GBTX. A programmable phase shifter is available to 172 generate 8 external user clocks with programmable frequency and phase. An external clock, or an on- 173 February14,2015–12:37 DRAFT 9 Figure 10: GBTx full functionality and connectivity with the Front End boards & the rest of the DAQ system. package crystal oscillator, is used during start-up as a locking aid for the CDR circuit and as a clock 174 referencefortheASICwatchdogcircuit. Generalcontrolandmonitoringlogictakescareofcontrolling 175 the different parts of the chip according to the operation mode selected and the ASIC configuration 176 information. Initialconfigurationinformationistakenfromtheonchipe-Fusesthatcanthenbemodified 177 viatheopticallinkitselforviaanI2Cslaveinterface. AJTAGinterfaceisavailableforboundaryscan. 178 Connections to the front-end modules or ASICs are made through sets of local Electrical Links (E- 179 Links). Depending on the data rate and transmission media used, E-Links allow connections that can 180 extenduptoafewmeters. E-LinksuseLow-VoltageDifferentialSignalling,withsignalamplitudesthat 181 are programmable to suit different requirements in terms of transmission distances, bit rate and power 182 consumption. TheE-LinksaredrivenbyaseriesofePortsontheGBTXandareassociatedwithE-link 183 ports in the front-end modules. The number of active E-Links and their data rate are programmable. 184 Parallelfront-endinterfaceswithdifferentbitwidthsarevalidsub-setsoftheflexibleE-Links[6]. 185 There are two options for miniSAS cables, one with sidebands as shown in Table 11b and one without 186 sidebands as shown in Table 11c. Also 3M fabricates custom miniSAS cables in any length in case it 187 needed. InourschemefortheconnectiontotheFrontEndthesamelengthofcableswillbeused. This 188 willleadtothesameclockanddatadelaypropagation. 189 ThereceiverportsoftheGBTXASICusestheScalableLow-VoltageSignallingfor400mV(SLVS-400) 190 andtheLVDSstandard. TheLVDSsignalsusesadifferentialvoltageswingof400mVcentredon1.2V. 191 TheSLVSstandardisalsodifferentialbutwithareducedvoltageswingof200mV,centredon0.2Vas 192 showninFigure12. 193 The VTRx optical transceiver consists of two ASICs, the GBTIA and the GBLD. The GTIA (GigaBit 194 TransImpendance Amplifier) has a bit rate of 5Gb/s (min) and a total jitter smaller than 40ps P-P. Its 195 supplyvoltageis2.5Vanditspowerconsumptionis250mW [8]. TheGBLD(GigaBitLaserDiode)is 196 alsoaradiationtolerantASICfabricatedin130nm. Ithasalsoabitrateof5Gb/s(min),supplyvoltage 197
Description: