Lesson 10: Covariances of causal ARMA Processes Umberto Triacca DipartimentodiIngegneriaeScienzedell’InformazioneeMatematica Universit`adell’Aquila, [email protected] UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses A causal ARMA(p,q) process Consider a causal ARMA(p,q) process x −φ x −...−φ x = u +θ u +...+θ u ∀t ∈ Z, t 1 t−1 p t−p t 1 t−1 q t−q u ∼ WN(0,σ2) t u φ(z) = 1−φ z −...−φ zp 1 p and θ(z) = 1+θ z...+θ zq 1 q UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses A causal ARMA(p,q) process The causality assumption implies that there exists constants ψ ,ψ ,... such that 0 1 ∞ (cid:88) |ψ | < ∞ j j=0 and ∞ (cid:88) x = ψ u ∀t. t j t−j j=0 The sequence {ψ ,ψ ,...} is determined by the identity 0 1 (1−φ z −...−φ zp)(ψ +ψ z...) = 1+θ z...+θ zq 1 p 0 1 1 q UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses A causal ARMA(p,q) process Equating coefficients of zj, j=0,1,..., we obtain ψ = 1 0 ψ = θ +ψ φ 1 1 0 1 ψ = θ +ψ φ +ψ φ 2 2 1 1 0 2 and so on. UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses A causal ARMA(p,q) process We have p (cid:88) ψ = θ + φ ψ , j = 0,1..., j j k j−k k=1 where θ = 1, θ = 0 for j > q and ψ = 0 for j < 0. 0 j j UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses The Autocovariance Function of a causal ARMA(p,q) process Since ∞ (cid:88) E (x ) = ψ E (u ) = 0 ∀t. t j t−j j=0 We have γ(k) = E (x x ) t t−k (cid:16) (cid:17) = E (cid:80)∞ ψ u (cid:80)∞ ψ u j=0 j t−j i=0 i t−k−i = (cid:80)∞ (cid:80)∞ ψ ψ E (u u ) j=0 i=0 j i t−j t−k−i UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses The Autocovariance Function of a causal ARMA(p,q) process Since u ∼ WN(0,σ2), we have that E (u u ) = σ2 if t t−j t−k−i i = j −k and 0 otherwise. Therefore ∞ (cid:88) γ(k) = σ2 ψ ψ k = 0,1,... j j−k j=0 UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses The Autocovariance Function of a causal ARMA(p,q) process It is possible to show that the sequence {γ(k)}, is absolutely summable, that is ∞ (cid:88) |γ(k)| < ∞. k=−∞ Further, we observe that the absolute summability of the sequence {γ(k)} implies that lim γ(k) = 0. k→∞ UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses The Autocovariance Function of a causal ARMA(p,q) process We can summarize our findings about the autocovariance function of a causal ARMA(p,q) process as follows: The autocovariance function of a causal ARMA(p,q) process is absolutely summable; The autocovariance function of a causal ARMA(p,q) process vanishes when the lag tends to infinity. UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses Ergodicity and ARMA process Are the causal ARMA processes ergodic? UmbertoTriacca Lesson10:CovariancesofcausalARMAProcesses
Description: