ebook img

Lectures on Twistors PDF

0.48 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Twistors

1 USC-06/HEP-B1 hep-th/0601091 Lectures on Twistors 1 ItzhakBars DepartmentofPhysicsandAstronomy 6 UniversityofSouthernCalifornia,LosAngeles,CA90089-0484,USA 0 0 Abstract 2 IntheselecturesIwilldiscussthefollowingtopics n a J Twistorsin4flatdimensions. • 4 – Masslessparticles,constrainedphasespace(xµ,pµ)versustwistors. 1 – Physicalstatesintwistorspace. 1 v Introductionto2T-physicsandderivationof1T-physicsholographsandtwistors. 1 • 9 – Emergentspacetimes&dynamics,holography,duality. 0 1 – Sp(2,R)gaugesymmetry,constraints,solutionsand(d,2). 0 – Globalsymmetry,quantizationandtheSO(d,2)singleton. 6 0 – Twistorsforparticledynamicsind dimensions,particleswithmass, rela- / tivistic,non-relativistic,incurvedspaces,withinteractions. h t - Supersymmetric2T-physics,gaugesymmetries&twistorgauge. p • e h – CouplingX,P,g,gaugesymmetries,globalsymmetries. : v – Covariantquantization,constrainedgenerators&representationsofGsuper. i X – Twistor gauge: supertwistors dual to super phase space. Examples in d=4,6,10,11. r a Supertwistorsandsomefieldtheoryspectraind=4,6. • – SuperYang-Millsd=4,N=4;Supergravityd=4,N=8. – Self-dualtensorsupermultipletandconformaltheoryind=6. Twistorsuperstrings • – d+2viewoftwistorsuperstringind=4. – Worldsheetanomaliesandquantizationoftwistorsuperstring. – Openproblems. 1Lectures delivered at the “2005 Summer School on String/M Theroy” in Shanghai, China, and the InternationalSymposiumQTS4,“QuantumTheoryandSymmetriesIV”,Varna,Bulgaria. 2 1 TWISTORSIND=4FLATDIMENSIONS 1 Twistors in d=4 flat dimensions Amasslessspinlessrelativisticparticlein4space-timedimensionsisdescribedbythe action 1 S(x,p)= dτ ∂ xµp ep p ηµν . (1) τ µ µ ν − 2 Z (cid:18) (cid:19) It hasa gaugesymmetryunderthe transformationsδ e = ∂ ε(τ),δ xµ = ε(τ)pµ, ε τ ε δ p = 0. The generator of the gauge symmetry is p2/2,and it vanishes as a conse- ε µ quenceoftheequationofmotionforthegaugefieldδS/δe=p2/2=0.Thisequation ofmotionisinterpretedasdemandingthatthesolutionspacemustbegaugeinvariant (sincethegeneratormustvanish). Inthecovariantquantizationofthissystemonedefinesthephysicalstatesasthose thatsatisfytheconstraintp2 φ = 0,sothattheyaregaugeinvariant. Acompleteset | i of physical states is found in momentum space k on which the gauge generator is | i simultaneously diagonal with the momentum operator p k = k k , and p2 k = µ µ | i | i | i k k2 = 0. The probability amplitude of a physical state in position space xφ = | i h | i φ(x) satisfies the condition xp2 φ = 0 which gives the Klein-Gordon equation h | | i ∂2φ(x) = 0. The generalsolution is a superpositionof plane waves, which are the probabilityamplitudesofphysicalstateswithdefinitemomentum d4k Generalsolution:φ(x)= (2π)4δ k2 a(k)eik·x+h.c. (2) Z (cid:0) (cid:1)(cid:2) (cid:3) Planewavewithdefinitemomentumkµ:φ (x)= xk eikx, k2 =0. (3) k · h | i∼ A similar treatment for spinning particles leads to the spinning free field equations, suchastheDiracequation,Maxwellequation,linearizedEinsteinequation,etc. 1.1 Twistors Thefollowingshowsseveralwaysofsolvingtheconstraintp2 =0ork2 =0thatenter intheseequations p2 =0: p0 =± p~2 or pαβ˙ =±(λλ†)αβ˙ = √12pµ(σµ)αβ˙ (4) p− =p2p/2p+ 2 2Hermitian,rank1,uptophaseλ eiφλ ⊥ × → In thesecondform, the matrixp is constructedfromtwo complexnumbersλ ,λ αβ˙ 1 2 thatformadoubletofSL(2,C)=SO(3,1) λ λ λ λ λ 1 p0+p3 p ip p=±(cid:18)λ12(cid:19)(λ∗1 λ∗2)=±(cid:18)λ21λ∗1∗1 λ21λ∗2∗2(cid:19)= √2(cid:18)p1+ip2 p10−−p32(cid:19) (5) Thishasautomaticallyzerodeterminantdet(p)=(λ λ )(λ λ ) (λ λ )(λ λ )= 1 ∗1 2 ∗2 − 1 ∗2 2 ∗1 0= p0+p3 p0 p3 (p ip )(p +ip )=p2 p~2,whichimposesthedesired − − 1− 2 1 2 0− solutionpµp = 0automatically. Notethattheoverallphaseeiφ ofλ dropsout,so µ α (cid:0) (cid:1)(cid:0) (cid:1) thematrixp reallyhasonly3realparameters,asitshould. αβ˙ 1.1 Twistors 3 ThereaderisremindedofabitofgrouptheoryforSL(2,C)=SO(3,1) λ 1,0 εαβ orεα˙β˙ = 0 1 spinors: α 2 , invarianttensors: 10 (cid:26) λ¯α˙ ≡(cid:0) λ†α˙(cid:1) 0,21 ( metric,raise/low(cid:16)er−indi(cid:17)ces (σµ)αβ˙ =(cid:0)(1,~σ(cid:1))αβ˙; (σ¯µ)α˙β =(−1,~σ)α˙β; (12,12)= ((210,,01))×((01,,120) vectors:  pµ : pαβ˙ = √12pµ(σµ)αβ˙, p¯α˙β = √12pµ(σ¯µ)α˙β, 2 × 2  xµ : xαβ˙ = 1 xµ(σ )αβ˙, x¯α˙β = 1 xµ(σ¯ )α˙β √2 µ √2 µ Penrose[2][3]suggestedasecondspinorµα˙ andintroducedthe“incidencerelation” whichdefinesxasbeingroughlythe“slope”ofa“line”inspinorspace µα˙ = ix¯α˙βλ , a“line”inspinorspace. (6) β − Finally a twistor is defined as Z = µα˙ , A = 1,2,3,4,that bundles togetherµ A λα andλasaquartet. IfµsatisfiesthePen(cid:16)rose(cid:17)relation,thenthepairµ,λisequivalentto thethephasespaceofthemasslessparticle µα˙ ( ix¯λ)α˙ on-shell Z = = − (7) A (cid:18)λα(cid:19) λα !⇔ psphaacsee (xµ,pµ) Althoughnotmanifest,themasslessparticleactionabovehasahiddenconformal symmetry SO(4,2). This symmetry can be made manifest through the twistor since SO(4,2) = SU(2,2) and the quartet Z can be classified as the fundamentalrepre- A sentation4ofSU(2,2).Thisnon-compactgrouphasametricwhichcanbetakenas C = 01 =σ 1.Usingthemetricwedefinetheotherfundamentalrepresentation ¯4ofSU1(02,2)an1d×relateittothecomplexconjugateofZ asfollows A (cid:0) (cid:1) Z¯A =Z†C = λ†α˙ µ†α = λ†α˙ iλ†x¯ α , C =σ1×1 (8) So Z¯AZ is invariant unde(cid:16)r SU(2,2(cid:17)). W(cid:16)e rem(cid:0)ind t(cid:1)he(cid:17)reader that the 4 and 4¯ of A SU(2,2)correspondtothetwoWeylspinorsofSO(4,2).Now,withµasgivenabove, wehave Z¯AZA =λ†α˙µα˙ +µ†αλα =−iλ†x¯λ+iλ†x¯λ=0. (9) So,byconstructiontheZ are4constrainedcomplexnumbers.Butwecanreverse A thisreasoning,andrealizethatthe definitionoftwistorsis justthestatementthatZ A isaquartetthathasanoverallirrelevantphaseandthatisconstrainedbyZ¯AZ = 0. A Then the form of µ in terms of λ can be understood as one of the possible ways of parameterizingasolution. Thesolutionµα˙ = ix¯α˙βλ isinterpretedasthemassless β − particle.Thisistheconventionalinterpretationoftwistors. However, recently it has been realized that there are many other ways of param- eterizing solutions for the same Z in terms of phase spaces that have many other A differentinterpretations[8]. Foranysolution,ifwecountthenumberofindependent realdegreesoffreedom,wefind 1realconstraint sameas Independent: (8realZ) =6real= (10) − 1realphase 3~x+3~p (cid:18) (cid:19) 4 1 TWISTORSIND=4FLATDIMENSIONS This is the right numbernot only for the massless particle, but also the massive par- ticle, relativistic or non-relativistic, in flat space or curved space, interacting or non- interacting. Next,wecomputethecanonicalstructureforthepair Z ,Z¯A ,andwefindthat A itisequivalenttothecanonicalstructureinphasespaceforthemasslessparticle,iffwe (cid:0) (cid:1) usethesolutionµα˙ = ix¯α˙βλ β − L=iZ¯A∂ Z =iλ¯ ∂ µα˙ +iµ¯α∂ λ τ A α˙ τ τ α =λα†˙∂τ(x¯λ)α˙ − λ†x¯ α∂τλα =λα†˙ ∂τx¯α˙β λβ(cid:0)=T(cid:1)r(p∂τx¯)=pµ∂τxµ Sothecanonicalpairs Z ,(cid:0)iZ¯A or(cid:1) λ ,iµ α or(xµ,p )areequivalentaslongas A α † µ theysatisfytherespectiveconstraintsZ¯AZ = 0andp2 = 0. Ifweusesomeofthe A (cid:0) (cid:1) (cid:0) (cid:1) othersolutionsgivenin[8]thenthecorrectcanonicalstructureemergesforthemassive particle,etc.,allfromthesametwistor(seebelow). Just like the constraint p2 = 0 followed from an action principle in Eq.(1), the constraints Z¯AZ = 0 can also be obtained from the following action principle by A minimizingwithrespecttoV S(Z)= dτ Z¯AiD Z 2hV = dτ Z¯Ai∂ Z +VZ¯AZ 2hV . τ A τ A A − − Z (cid:0) (cid:1) Z (cid:0) (cid:1)(11) Here D Z = ∂ Z iVZ is a covariant derivative for a U(1) gauge symmetry τ A τ A A − Z (τ) Z (τ) = eiω(τ)Z (τ).Thegaugesymmetryispreciselywhatisneeded A → A′ A toremovetheunphysicaloverallphasenotedabove. For spinning particles, an extra term 2hV is included in the action (missing in − formerliterature).ThistermisgaugeinvariantbyitselfundertheU(1)gaugetransfor- mationofV.Wehavebeendiscussingthespinlessparticleh = 0,buttwistorscanbe generalizedtospinningparticlesbytakingh=0.Theequationofmotionwithrespect toV givestheconstraintZ¯AZ = 2h.Ifthe6 twistortransformformasslessparticles, A appropriatelymodifiedtoincludespin,isusedtosolvethisconstraint[2][3][4],then hisinterpretedasthehelicityofthespinningmasslessparticle. Butifthemoregen- eraltransformsin [8]are used, then h is nothelicity, butis aneigenvalueofCasimir operatorsofSU(2,2)inarepresentationforspinningparticles2. We have argued that the twistor action S(Z) is equivalent to the spinless mass- less particle action S(x,p) (at least in one of the possible ways of parameterizing its solutions). But note that S(Z)is manifestlyinvariantunderthe globalsymmetry SU(2,2). This is the hidden conformal symmetry SO(4,2) of the massless particle action S(x,p). ApplyingNoether’stheoremwe derivethe conservedcurrent, which 2Thispointwillbediscussedindetailinafuturepaper. 1.2 Physicalstatesintwistorspace 5 inturniswrittenintermsofxµ,p asfollows µ 1 ix¯λ JAB =ZAZ¯B− 4ZCZ¯CδAB = −λ λ† iλ†x¯ (12) (cid:18) (cid:19) (cid:0) (cid:1) ix¯λλ x¯λλ x¯ ix¯p x¯px¯ 1 = − † † = = ΓMNL (13) MN λαλ†β˙ iλαλ†x¯! (cid:18) p −ipx¯(cid:19) 4i 1 1 = Γ+′ ′L+′ ′ + L Γµν Γ+′L ′µ Γ ′L+′µ (14) 2i − − − 2 µν − µ − − −µ (cid:18) (cid:19) Inthelastlinethetraceless4 4matrix ix¯p x¯px¯ isexpandedintermsofthefol- × p ipx¯ − lowingcompletesetofSO(4,2)gammam(cid:16)atricesΓM(cid:17)N (M = ,µ,seefootnote(6)) ± 10 σ¯µν 0 σ¯µν σ¯[µσν] Γ+′−′ = − , Γµν = , ≡ (15) 0 1 0 σµν σµν σ[µσ¯ν] (cid:18) (cid:19) (cid:18) (cid:19) ≡ 0σ¯µ 0 0 Γ+′µ =i√2 , Γ ′µ = i√2 , (16) − 0 0 − σµ0 (cid:18) (cid:19) (cid:18) (cid:19) ThisidentifiesthegeneratorsoftheconformalgroupLMN asthecoefficients x2 L+′ ′ =x p, Lµν =xµpν xνpµ, L+′µ =pµ, L ′µ = pµ xµx p. (17) − − · − 2 − · It can be checked that this form of LMN are the generators of the hidden SO(4,2) conformal symmetry of the massless particle action. The SO(4,2) transforma- tions are given by the Poisson brackets δxµ = 1ω LMN,xµ and δpµ = 2 MN 1ω LMN,pµ , and these LMN are the conserved charges given by Noether’s 2 MN (cid:8) (cid:9) theorem. Furthermore they obey the SO(4,2) Lie algebra under the Poisson brack- (cid:8) (cid:9) ets. ThisresultisnotsurprisingoncewehaveexplainedthatS(Z)= S(x,p)viathe twistortransform. ThesameSU(2,2)symmetryofthetwistoractionS(Z)hasotherinterpretations as the hidden symmetry of an assortment of other particle actions when other forms oftwistortransformisused,asexplainedin[8]. Thisrecentbroaderresultmayseem surprisingbecauseitiscommonlyunfamiliar. 1.2 Physicalstates intwistorspace Incovariantquantizationaphysicalstateforaparticleofanyhelicityshouldsatisfythe helicityconstraint 1(Z Z¯A+Z¯AZ )ψ =2hψ .Thisisinterpretedasmeaningthat 2 A A | i | i thephysicalstate ψ isinvariantundertheU(1)gaugetransformationgeneratedbythe | i constraintthatfollowedfromthetwistoractionS(Z). TheprobabilityamplitudeinZ space is ψ(Z) Z ψ , so we can write Z¯Aψ(Z) = Z Z¯A ψ = ∂ ψ(Z). ≡ h | i h | | i −∂ZA Thenthehelicityconstraint 1 Z (Z Z¯A+Z¯AZ )ψ =2h Z ψ producesthephys- 2h | A A | i h | i icalstatecondition, ∂ Z ψ(Z)=( 2h 2)ψ(Z) (18) A ∂Z − − A 6 1 TWISTORSIND=4FLATDIMENSIONS for a particle of helicity h. So a physicalwavefunctionin twistor space ψ(λ,µ) that describesaparticlewithhelicityhmustbehomogeneousofdegree( 2h 2)under − − the rescalingZ tZ or(µ,λ) (tµ,tλ) [2][3]. Thisis the onlyrequirementfor → → a physical state ψ(Z) in twistor space, and it is easily satisfied by an infinite set of functions. Ifweusethetwistortransformformasslessparticlesµ= ix¯λandp = λλ¯,then − anyhomogeneousphysicalstateintwistorspaceshouldbeasuperpositionofmassless particle wavefunctions since p2 = 0 is automatically satisfied. A similar statement would hold for any of the other twistor transforms given in [8], so a physical state in twistor space can also be expandedin terms of the wavefunctions2 of the particle systemsdiscussedin[8][9]. Letusnow considerthe expansionof a physicalstate ψ in termsofmomentum | i eigenstates pµ k = kµ k , for a massless particle with k2 = 0. We parameterize | i | i k = π π¯ asin Eq.(4), whereπ canbe redefinedupto a phase π eiγπ with- αβ˙ α β˙ α → out changing the physical state k . In position space such a physical state gave the | i plane wave as in Eq.(3), which we can rewrite as φ (x) = xk exp(ik x) = k h | i ∼ · exp(iTrx¯ππ¯). The twistor space analogis φ (λ,µ) = Z k = λ,µπ,π¯ . Since k h | i h | i k isacompletesetofstates,itispossibletowriteageneralphysicalstateintwistor | i spaceasaninfinitesuperpositionofthe Z k witharbitrarycoefficients,inthesame h | i wayasthegeneralsolutionoftheKlein-GordonequationinEq.(2) ψ(Z)= d2πd2π¯[a(π,π¯) Z π,π¯ +h.c.] (19) h | i Z To determine Z k = λ,µπ,π¯ , first note that the eigenstate of λ is propor- α h | i h | i tional to π , so there must be an overall delta function λ,µπ,π¯ δ( λπ ). The α h | i ∼ h i argument of the delta function is the SL(2,C) invariant dot product defined by the symbol λπ λ π εαβ.Thevanishingof λπ =0requiresλ π ,henceinthe α β α α h i ≡ h i ∝ wavefunction λ,µπ,π¯ wecanreplaceλ = λπ uptoanoverallconstantcsym- h | i α π α bolizedbyc= λ.Thisistheratioofeithercomponent λ λ1 = λ2.Sowecanwrite π π ≡ π1 π2 Z k = λ,µπ,π¯ =δ( λπ )f π,π¯,λ,µ .Nextexaminethematrixelementsof hthe|twiistohrtran|sformi p h λiλ¯ =0anπdapplytheoperatorsoneithertheketorthe αβ˙ − α β˙ (cid:0) (cid:1) braasfollows(λ¯ actsasaderivative ∂ ontheeigenvalueofµβ˙) β˙ −∂µβ˙ ∂ 0= Z p λ λ¯ k = k +λ λ,µπ,π¯ (20) h | αβ˙ − α β˙ | i αβ˙ α∂µβ˙ h | i (cid:16) (cid:17) (cid:18) (cid:19) λ ∂ λ =δ( λπ )π π¯ + f π,π¯, ,µ . (21) h i α β˙ π∂µβ˙ π (cid:18) (cid:19) (cid:18) (cid:19) The solution is f(π,π¯,λ,µ) = g π,π¯,λ exp ππ¯ µα˙ , for any g π,π¯,λ , so π −λ α˙ π Z k =δ( λπ )exp ππ¯ µα˙ g π,π¯,λ .Notethattheexponentialisarewriting h | i h i −λ α˙ (cid:0) π(cid:1) (cid:0) (cid:1) (cid:0) (cid:1) oftheplanewaveexp(iTrx¯ππ¯)byusingπ = πλandthensettingµ= ix¯λ. (cid:0) (cid:1) (cid:0) (cid:1) λ − Finally we determineg π,π¯,λ for a particlewith any helicity h. Accordingto π the previous paragraph, since Z k is a physical wavefunction, it should be homo- (cid:0) h | i(cid:1) geneous of degree ( 2h 2) under a rescaling (µ,λ) (tµ,tλ). It should also − − → 1.2 Physicalstatesintwistorspace 7 be phase invariant under the phase transformations π eiγπ, π¯ e iγπ¯ since − → → the momentum state k labeled by k = π π¯ is phase invariant. The expo- | i αβ˙ α β˙ nential exp ππ¯ µα˙ is homogeneous as well as phase invariant, while the delta −λ α˙ function satisfies δ tλeiγπ = t 1e iγδ( λπ ). These considerations determine (cid:0) h (cid:1) i − − h i g π,π¯,πλ = πλ −(cid:0)1−2hφh(π(cid:1),π¯),withφh eiγπ,e−iγπ¯ =e−i2hγφh(π,π¯). Thespecificφ (π,π¯)foreachhelicityaredeterminedasfollows. φ (π,π¯)must h h (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) have SL(2,C) spinor indicesfor the representation(j ,j ),since for a spinningpar- 1 2 ticle the complete set of labels includesLorentz indices k,j ,j , in addition to 1 2 | ···i momentum. The chirality of the SL(2,C) labels must be compatible with the spin j +j = h. So thisdeterminestheLorentzindicesonthe wavefunctionφ (π,π¯) 1 2 h | | as well as the coefficientsa(π,π¯) in Eq.(19). Examplesof the overallwavefunction Z k isgiveninthetablebelow h | i hZ|ki=δ(hλπi)exp −πλπ¯α˙µα˙ πλ −1−2hφh(π,π¯). particle (j ,j ) φ (π,π¯) 1 2 (cid:0) h (cid:1)(cid:0) (cid:1) scalar (0,0) φ (π,π¯)=1 0 (0,1) ψh=+1/2(π,π¯)=π¯ quark 2 α˙ α´ (21,0) ψαh=−1/2(π,π¯)=πα Ah=+1(π,π¯)= wαπ¯β˙ gAauµgepotential 21,12 Ahαα=ββ˙˙−1(π,π¯)= πhαππ¯www¯¯βi˙ (22) fieldstrength (cid:0)(0,1)(cid:1) Fαh˙β=˙+1(π,π¯)=π¯hα´π¯iβ˙ Fµν (1,0) Fαhβ=−1(π,π¯)=παπβ gh=+2(π,π¯)= π¯α´π¯β˙wγwδ gmµeνtric (1,1) gααh˙=ββ˙γγ−˙δδ˙2(π,π¯)= παhπππ¯βww¯w¯iγ˙22w¯δ˙ h i curvature (0,2) Rαh˙=β˙γ+˙δ˙2(π,π¯)=π¯α´π¯β˙π¯γ˙π¯δ˙ Rµνλσ (2,0) Rαh=βγ−δ2(π,π¯)=παπβπγπδ The field strength F = ∂ A can be written in terms of the gauge potential in µν [µ ν] momentumandspinorspaceforanarbitrarycombinationofbothhelicitiesasfollows Aαβ˙ =a+A+αβ˙(π,π¯)+a−A−αβ˙(π,π¯) (23) F =k A k A =ε a+F+ (π,π¯)+ε a F (π,π¯) (24) αβ˙γδ˙ αβ˙ γδ˙ − γδ˙ αβ˙ αγ β˙δ˙ β˙δ˙ − α−γ which is consistent with the wavefunctions A (π,π¯),F (π,π¯) given in the table ± ± above. Notethatallwavefunctionsareautomaticallytransversetok = π π¯ under αβ˙ α β˙ theLorentzinvariantdotproductusingthemetricinspinorspaceεαβ εα˙β˙. ⊕ In field theory computations that use twistor techniques [17], the twistor space wavefunctions above are used for the corresponding physical external particles with definitemomentum,uptooverallnormalizations. 8 2 2T-PHYSICS 2 2T-physics Asmentionedabove,ithasbeendiscoveredrecentlythattherearemanywaysofsolv- ingthesameconstraintsonthetwistorZ andderiveotherrelationsbetweenµ,λand A phasespace[8].Theseothersolutionsdescribenotonlythemasslessparticle,butalso massiveparticle,relativisticornon-relativistic,inflatspaceorcurvedspace,interact- ing or non-interacting, as shown in the examples in Fig.1. These new twistors were discoveredbyusingtwotimephysics(2T-physics)asatechnique. 2T-physicswasalsousedtoobtainthegeneralizationoftwistorstohigherdimen- sions,tosupersymmetry,andtoD-branes.IntherestoftheselecturesIwillfirstgivea briefoutlineofthemainaspectsof2T-physicsandthensummarizethesenewresults. 2T-physics: unified emergent space-times & dynamics, hidden symmetries, holography and duality in 1T-physics Emergent spacetime: Holography: from Sp(2,R) gauge (d,2) to (d-1,1). choices. Some spinless All images combination of holographically XM,PMis fixed represent the as t,H. spinless same 2T system Can fix 3 gauges, but fix 2 or 3 Hidden symmetry: Duality: Sp(2,R) All images relates one fixed have hidden gauge to another SO(d,2) symmetry, for the example. 8 Unification: 2T-physics unifies diverse forms of 1T-physics into a single theory. Fig.1-2T-physicsind+2descendstomany1T-physicssystemsin(d 1)+1. − 2.1 Emergent spacetimes & dynamics, holography,duality. 2T-physicscanbeviewedasaunificationapproachforone-timephysics(1T-physics) systemsthroughhigherdimensions. ItisdistinctlydifferentthanKaluza-Kleintheory because there are no Kaluza-Klein towers of states, but instead there is a family of 1T systems with duality type relationships among them. The 2T theory is in d+2 dimensions,buthasenoughgaugesymmetrytocompensatefortheextra1+1dimen- 2.2 Sp(2,R)gaugesymmetry,constraints,solutionsand(d,2) 9 sions,sothatthephysical(gaugeinvariant)degreesoffreedomareequivalenttothose encounteredin1T-physics. Oneofthestrikinglysurprisingaspectsof2T-physicsisthatagivend+2dimen- sional2Ttheorydescends,throughgaugefixing,downtoafamilyofholographic1T imagesin(d 1)+1dimensions. Fig.1belowillustratesafamilyofholographicim- − agesthathavebeenobtainedfromthesimplestmodelof2T-physics[6].Theseinclude interactingaswellasfreesystemsin1T-physics. It must be emphasized that as a by product of the 2T-physics approach certain physicalparameters,suchasmass,parametersofspacetimemetric,andsomecoupling constants appear as moduli in the holographic image while descending from d + 2 dimensionalphasespaceto(d 1)+1dimensionsortotwistors. − EachimagerepresentedbytheovalsaroundthecenterinFig.1fullycapturesthe gaugeinvariantphysicalcontentofauniqueparent2Ttheorythatsitsatthecenter.But fromthepointofviewof1T-physicseachimageappearsasadifferent1T-dynamical system. Themembersofsuchafamilynaturallymustobeyduality-typerelationships among them and share many common properties. In particular they share the same overallglobalsymmetryind+2dimensionsthatbecomeshiddenandnon-linearwhen acting on the fewer (d 1)+ 1 dimensions in 1T-physics. Thus 2T-physics unifies − many1Tsystemsintoafamilythatcorrespondstoagiven2T-physicsparentind+2 dimensions. 2.2 Sp(2,R) gaugesymmetry,constraints, solutions and(d,2) Theessentialingredientin2T-physicsisthebasicgaugesymmetrySp(2,R)actingon phasespaceXM,P in d+2dimensions. Thetwotimelike directionsis notanin- M put,butisoneoftheoutputsoftheSp(2,R)gaugesymmetry. Aconsequenceofthis gaugesymmetry is that position and momentumbecomeindistinguishableat any in- stant,sothesymmetryisoffundamentalsignificance.ThetransformationofXM,P M isgenerallyanonlinearmapthatcanbeexplicitlygiveninthepresenceofbackground fields [18], but in the absence of backgroundsthe transformation reduces to a linear doubletactionofSp(2,R)on XM,PM foreachM [5]. Thephysicalphasespace is the subspace that is gauge invariant under Sp(2,R). Since Sp(2,R) has 3 gener- (cid:0) (cid:1) ators, to reach the physical space we must choose 3 gauges and solve 3 constraints. So, the gauge invariant subspace of d + 2 dimensional phase space XM,P is a M phasespacewithsixfewerdegreesoffreedomin(d 1)spacedimensions xi,p , i − i=1,2, (d 1). ··· − (cid:0) (cid:1) InsomecasesitismoreconvenientnottofullyusethethreeSp(2,R)gaugesym- metry parameters and work with an intermediate space in (d 1) + 1 dimensions − (xµ,p ), that includes time. This space can be further reduced to d 1 space di- µ − mensions xi,p byaremainingone-parametergaugesymmetry. i Therearemanypossiblewaystoembedthe(d 1)+1or(d 1)phasespacein (cid:0) (cid:1) − − d+2 phase space, and this is doneby makingSp(2,R)gaugechoices. In the result- ing gauge fixed 1T system, time, Hamiltonian, and in general curved spacetime, are emergent concepts. The Hamiltonian, and therefore the dynamics as tracked by the emergenttime,maylookquitedifferentinonegaugeversusanothergaugeintermsof theremaininggaugefixeddegreesoffreedom.Inthisway,aunique2T-physicsaction 10 2 2T-PHYSICS givesrisetomany1T-physicssystems. A particle interacting with various backgrounds in (d 1)+1 dimensions (e.g. − electromagnetism,gravity,highspinfields,anypotential,etc.),usuallydescribedina worldlineformalismin1T-physics,canbeequivalentlydescribedin2T-physics. Thegeneral2Ttheoryforaparticlemovinginanybackgroundfieldhasbeencon- structed[18].Foraspinlessparticleittakestheform 1 S = dτ X˙iMP AijQ (X,P) , (25) M ij − 2 Z (cid:18) (cid:19) where the symmetric Aij(τ) , i,j = 1,2, is the Sp(2,R) gauge field, and the three Sp(2,R)generatorsQ (X(τ),P (τ)),whichgenerallydependonbackgroundfields ij that are functions of (X(τ),P(τ)), are required to form an Sp(2,R) algebra. The backgroundfieldsmustsatisfycertainconditionstocomplywiththeSp(2,R)require- ment. Aninfinitenumberofsolutionstotherequirementcanbeconstructed[18]. So any 1T particle worldline theory, with any backgrounds, can be obtained as a gauge fixedversionofsome2Tparticleworldlinetheory. The 1T systems which appear in the diagram above are obtained by considering thesimplestversionof2T-physicswithoutanybackgroundfields. The2Tactionfora “free”2Tparticleis[5] 1 1 S = dτ D XMXNη εij = dτ X˙MPN AijXMXN η . 2T 2 τ i j MN − 2 i j MN Z Z (cid:18) (cid:19) (26) HereXM = XM PM ,i=1,2,isadoubletunderSp(2,R)foreveryM,thestruc- i ture D XM = ∂ XM AjXM is the Sp(2,R) gaugecovariantderivative, Sp(2,R) τ i (cid:0) τ i (cid:1)− i j indicesareraisedandloweredwiththeantisymmetricSp(2,R)metricεij,andinthe last expression an irrelevant total derivative (1/2)∂ (X P) is dropped from the τ − · action. ThisactiondescribesaparticlethatobeystheSp(2,R)gaugesymmetry,soits momentumandpositionarelocallyindistinguishableduetothegaugesymmetry. The XM,PM satisfytheSp(2,R)constraints (cid:0) (cid:1) Q =X X =0: X X =P P =X P =0, (27) ij i j · · · · thatfollowfromtheequationsofmotionforAij. Thevanishingofthegaugesymme- try generators Q = 0 implies that the physical phase space is the subspace that is ij Sp(2,R)gaugeinvariant. Theseconstraintshavenon-trivialsolutionsonlyifthemet- ric η has two timelike dimensions. So when position and momentumare locally MN indistinguishable,tohaveanon-trivialsystem,twotimelikedimensionsarenecessary asaconsequenceoftheSp(2,R)gaugesymmetry. Thusthe XM,PM inEq.(26)areSO(d,2)vectors,labeledbyM = 0,1,µor ′ ′ M = ,µ,andµ=0,1, ,(d 1)orµ= ,1, ,(d 2),withlightconetype ′ ± (cid:0) (cid:1) ··· − ± ··· − definitions of X ′ = 1 X0′ X1′ and X = 1 X0 X3 . The SO(d,2) ± √2 ± ± √2 ± (cid:16) (cid:17) (cid:0) (cid:1)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.