lectures on the Theory of Group Properties of Differential Equations 微分方程群性质理论讲义 Edited by N. H. Ibragimov 也 1lt奇'J:P.ι~l HIGHEREOυCAτlONPRESS • NONLINEAR PHYSICAL SCIENCE (cid:154)(cid:130)5(cid:212)n(cid:137)˘ This page intentionally left blank NONLINEAR PHYSICAL SCIENCE NonlinearPhysicalSciencefocusesonrecentadvancesoffundamentaltheoriesand principles,analyticalandsymbolicapproaches,aswellascomputationaltechniques innonlinearphysicalscienceandnonlinearmathematicswithengineeringapplica- tions. TopicsofinterestinNonlinearPhysicalScienceincludebutarenotlimitedto: -Newfindingsanddiscoveriesinnonlinearphysicsandmathematics -Nonlinearity,complexityandmathematicalstructuresinnonlinearphysics -Nonlinearphenomenaandobservationsinnatureandengineering -Computationalmethodsandtheoriesincomplexsystems -Liegroupanalysis,newtheoriesandprinciplesinmathematicalmodeling -Stability,bifurcation,chaosandfractalsinphysicalscienceandengineering -Nonlinearchemicalandbiologicalphysics -Discontinuity,synchronizationandnaturalcomplexityinthephysicalsciences SERIES EDITORS AlbertC.J.Luo NailH.Ibragimov Department of Mechanical and Industrial DepartmentofMathematicsandScience Engineering BlekingeInstituteofTechnology SouthernIllinoisUniversityEdwardsville S-37179Karlskrona,Sweden Edwardsville,IL62026-1805,USA Email:[email protected] Email:[email protected] INTERNATIONAL ADVISORY BOARD PingAo,UniversityofWashington,USA;Email:[email protected] JanAwrejcewicz,TheTechnicalUniversityofLodz,Poland;Email:[email protected] EugeneBenilov,UniversityofLimerick,Ireland;Email;[email protected] EshelBen-Jacob,TelAvivUniversity,Israel;Email:[email protected] MauriceCourbage,Universite´Paris7,France;Email:[email protected] MarianGidea,NortheasternIllinoisUniversity,USA;Email:[email protected] JamesA.Glazier,IndianaUniversity,USA;Email:[email protected] ShijunLiao,ShanghaiJiaotongUniversity,China;Email:[email protected] JoseAntonioTenreiroMachado,ISEP-InstituteofEngineeringofPorto,Portugal;Email:[email protected] NikolaiA.Magnitskii,RussianAcademyofSciences,Russia;Email:[email protected] JosepJ.Masdemont,UniversitatPolitecnicadeCatalunya(UPC),Spain;Email:[email protected] DmitryE.Pelinovsky,McMasterUniversity,Canada;Email:[email protected] SergeyPrants,V.I.Il’ichevPacificOceanologicalInstituteoftheRussianAcademyofSciences.Russia; Email:[email protected] VictorI.Shrira,KeeleUniversity,UK;Email:[email protected] JianQiaoSun,UniversityofCalifornia,USA;Email:[email protected] Abdul-MajidWazwaz,SaintXavierUniversity,USA;Email:[email protected] PeiYu,TheUniversityofWesternOntario,Canada;Email:[email protected] L.y. Ovsyannikov Lectures on the Theory of Group Properties of Differential Equations 微分方程群'性质理论讲义 Weifen Fangcheng Qunxingzhi Lilun Jiangyi Edited by N.H. Ibragimov Translated by E.D. Avdonina, N.H. Ibragimov ·北京 剧盹 Aωh(Jr E"it(J~ LV Ov<ya盯nikov \lail H. Ihrdgimo飞 Couocilor ofRussian Acadcrηy nfScicnce< Dcpartmcnt of Mnthcrnatics and 只~'Pnt'. Lavrcntyc\' lns{itu{c of Hydr 、d,叫到m,~< Blckingc InSlilutc ofTcchnol,唱、 Lavrentyev ?叫 15 371 79 Karlskron~. <:"'edcn Novosibirsk, 63∞ 90. Rω"" E-mail' nih(i毛hlh ~旷 F-m~il' ovs(a)hytlro.MC.nI , , 俨 2013 Highcr Edu陀alion f>r陀ss Lim ted Comp3ny. 4 Dewai Dajie. 1阳。120. R~;i;η~. l' R \'j,," 图书在版捕目 (C f P )数据 微甘方程前性顶用ìt讲义== Lecturt's on the theory of grO\lp pr叩ertl<"::龟 o(di卧陀nti31 叫ll"UOn、英文 ! (俄罗斯) 跑走斯币尼科J王若 北京高耳教育出版祉 2013.4 (非战忡物坪科学/罗明位 f 瑞典丁伊布柿韭'"失 丰蝙) ISDN 9ï8 ï 04 036944 1 ①橄 U. ,:1)现 rn ①微分方程研究英文 '2'本群 研究英立 [\' ~.v OlïS 字。 1:;2 5 小罔版术闯卡11'\ (":IP 数据枯宁( :!Ol飞)寄; 029566 号 司E划l编幌子'.RF.浮 ,陪任编指 手华英 树面设计均TJ新 I<i式1号计字..灯 白阿侄核对 陈烟野 哥哥{圣即制桥创 出胶好?于 2写写数育出版社 咨淘司且活 ~OO-810-0598 垃 址 北京市西城l主ll!外大街 4 哥 同 址 htrp:ltw飞.vw.hep,edu.rn ;Ij(\~偏码 100120 http;//飞飞飞V飞v.hcp.com.cn 日j 自由 原4钊币犀间四月11苟明公司 网上订购 http://w飞V咽..,I~ndr且C(),COl11 开 '" 787n,,"" \(192111'" \ 11 (, 11Itp://ww飞,v.landmço.com ffl 印 ?长 <).75 版 次 20\3年 4 月革 l 版 字 数 2\0干宇 印 次 20\3埠 4 同事 1 府阳回| 晌书热钱 。\0-585日111冉 本?主如有缺页 倒!lî、树荫锋精俗J♂锁 1窗咧日开耐图书销笛苦恼叮联系1湖法 版权所有慢权必究 ?匆料号 3的料 ω Editor’s preface WhenIstudiedatNovosibirskStateUniversity(Russian)Iwasluckytohavesuch brilliantteachersinmathematicsas M.A.Lavrentyev,S.L.Sobolev,A.I.Mal’tsev, Yu.G.Reshetnyakandothers.ButitwereL.V.Ovsyannikov’slecturesinOrdinary differentialequations,Partialdifferentialequations,GasdynamicsandGroupprop- erties ofdifferentialequationsthat wereofthemostbenefitforme.I attendedhis course“Grouppropertiesofdifferentialequations”whenIwasathird-yearstudent. His lectures provided a clear introduction to Lie group methods for determining symmetries of differentialequations and a variety of their applications in gas dy- namicsandothernonlinearmodelsaswellasOvsyannikov’sremarkablecontribu- tiontothisclassicalsubject.Hislectureswerespectacularnotonlyduetothebril- liantpresentationofthematerialbutalsoduetoabsolutelynewdiscoveriesforus.I rememberoneofourmostemotionalstudent’srepeatedexclamationslike“Wonder- ful,...Incredible!”everytimewhenOvsyannikovrevealedmostunusualproperties ofsymmetriesorunexpectedmethods. His lecture notes of this course were published in 1966 with the print of 300 copiesonly.SincethentheNoteswereneitherreprintednortranslatedintoEnglish, thoughtheycontainthematerialthatisusefulforstudentsandteachersbutcannotbe foundinmoderntexts.Forexample,theoryofpartiallyinvariantsolutionsdeveloped byOvsyannikovandpresentedinx3.5,x3.6isusefulforinvestigatingmathematical models described bysystems ofnonlineardifferentialequations.Itis importantto makethisclassicaltextavailabletoeveryoneinterestedinmoderngroupanalysis. In order to adapt the text for modern students I made several minor changes intheEnglishtranslation.Inparticular,sectionshavebeendividedintosubsections andfewmisprintshavebeencorrected.Partoftheproblemsformulatedin x3.7have beencompletelyorpartiallysolvedsince1966.Butwedidnotmakeanycomments onthismatterinthepresenttranslation. January2013 NailH.Ibragimov Preface Thetheoryofdifferentialequationshastwoaspectsofinvestigation,namelylocal andglobal,nomatterwhethertheequationsarisefromappliedproblemsofphysics and mechanics or from abstract speculations (which is rather frequent in modern mathematics).Thelocalaspectischaracterizedbydealingwiththeinnerstructure of a familyofsolutionsandits investigationina neighborhoodof acertainpoint. Theglobalapproachdealswithsolutionsdefinedinsomedomainandhavingagiven behavioronitsboundary. It would certainlybe erroneousto opposethese directionsto each other. How- ever,it is nogoodtoignorethedifferencesinapproacheseither.Whiletheglobal approachnecessitatesthefunctionalanalyticapparatus,thelocalviewpointallows onetogetalongwithalgebraicmeansonly.Abrilliantexampleofaprofoundlo- cal consideration is the famous Cauchy-Kovalevskaya theorem which is, in fact, an algebraic statement. Moreover,it is an easy matter to notice that the theory of boundary valueproblemsalso makes an essential applicationof various algebraic propertiesofthewholefamilyofsolutions.Therefore,thelocalaspectofthealge- braictheoryofdifferentialequationsisquitevital. Thetheoryof grouppropertiesof differentialequationsdescriedin the present lecturenotesisatypicalexampleofalocaltheory.Itisespeciallyvaluableininves- tigatingnonlineardifferentialequations,foritsalgorithmsacthereasreliablyasfor linearcases. Inspiteofthefactthatthefundamentalsofthetheoryofgrouppropertieswere elaboratedinworksoftheNorwegianmathematicianSophusLiemorethanahun- dredyearsago,itsdevelopmentisdesirablenowadaysaswell. Methodologicalpeculiarityofthepresenttextisthatitsfirstchapterusesonlythe simplestalgebraicapparatusofone-parametergroups,whichisespeciallyadvisable forresearchersengagedinappliedfields. This allowsoneto solvethe problemof findingagroupadmittedbyagivensystemofdifferentialequationscompletely.The secondchapteristailoredtoprovideadeeperinsightintothesubjectresultingfrom solvingdeterminingequations.Thegroupstructureofthefamilyofsolutionsitself is discussed in the third chapter, which also suggests some new elements for the theory.Thelatterarerelatedtothenotionsofapartiallyinvariantmanifoldofthe viii Preface group,its defectof invariance,and the problemof reductionof partiallyinvariant solutions.Thefinalsection x3.7suggestsaqualitativeformulationofseveralprob- lemsdemonstratingpossibilitiesforfurtherdevelopmentofthetheorywithnoclaim tobecomplete. Thepresentlecturenotesarewrittenhotonthetracesofaspecialcoursegiven bytheauthorinNovosibirskStateUniversityduringthe1965/1966academicyear. Suchapromptdecisionwasmadetohavethelecturenotespublishedbythespring examinations.Therefore,thelecturesmayappeartobe“raw”tomanyextent,and theauthorisreadytobecompletelyresponsibleforthat. Thequickreleaseofthelecturenoteswouldbeimpossiblewithoutthesupportof administrationoftheuniversity.Amajortechnicalworkinpreparingthemanuscript was done by the students V.G. Firsov,E.Z. Borovskaya,T.E. Kuzmina,N.I. Nau- menko, M.L. Kochubievskaya and others. The author is sincerely grateful to all thesepeople. Novosibirsk,Russia,May1966 L.V.Ovsyannikov Contents Editor’spreface .................................................... v Preface............................................................ vii 1 One-parametercontinuoustransformationgroupsadmittedby differentialequations ........................................... 1 1.1 One-parametercontinuoustransformationgroup................. 1 1.1.1 Definition.......................................... 1 1.1.2 Canonicalparameter ................................. 3 1.1.3 Examples........................................... 4 1.1.4 Auxiliaryfunctionsofgroups.......................... 5 1.2 Infinitesimaloperatorofthegroup ............................ 7 1.2.1 Definitionandexamples .............................. 7 1.2.2 Transformationoffunctions ........................... 9 1.2.3 Changeofcoordinates ................................ 10 1.3 Invariantsandinvariantmanifolds............................. 12 1.3.1 Invariants........................................... 12 1.3.2 Invariantmanifolds................................... 14 1.3.3 Invarianceofregularlydefinedmanifolds ................ 15 1.4 Theoryofprolongation...................................... 17 1.4.1 Prolongationofthespace ............................. 17 1.4.2 Prolongedgroup..................................... 18 1.4.3 Firstprolongationofthegroupoperator ................. 19 1.4.4 Secondprolongationofthegroupoperator ............... 22 1.4.5 Propertiesofprolongationsofoperators ................. 24 1.5 Groupsadmittedbydifferentialequations....................... 28 1.5.1 Determiningequations................................ 28 1.5.2 First-orderordinarydifferentialequations................ 30 1.5.3 Second-orderordinarydifferentialequations ............. 32 1.5.4 Heatequation ....................................... 34 1.5.5 Gasdynamicequations................................ 42