ebook img

Lectures on the differential geometry of curves and surfaces PDF

237 Pages·2005·2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on the differential geometry of curves and surfaces

ff Lectures on the Di erential Geometry of Curves and Surfaces Paul A. Blaga ToCristina,withlove Contents Foreword 9 I Curves 11 1 Spacecurves 13 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Parameterizedcurves(paths) . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Thedefinitionofthecurve . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4 Analyticalrepresentationsofcurves . . . . . . . . . . . . . . . . . . . 26 1.4.1 Planecurves . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4.2 Spacecurves . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 Thetangentandthenormalplane . . . . . . . . . . . . . . . . . . . . . 32 1.5.1 The equations of the tangent line and normal plane (line) for differentrepresentationsofcurves . . . . . . . . . . . . . . . . 35 1.6 Theosculatingplane . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.7 Thecurvatureofacurve . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.7.1 Thegeometricalmeaningofcurvature . . . . . . . . . . . . . . 44 1.8 TheFrenetframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.8.1 ThebehaviouroftheFrenetframeataparameterchange . . . . 47 1.9 Orientedcurves. TheFrenetframeofanorientedcurve . . . . . . . . . 48 1.10 TheFrenetformulae. Thetorsion . . . . . . . . . . . . . . . . . . . . . 50 6 Contents 1.10.1 Thegeometricalmeaningofthetorsion . . . . . . . . . . . . . 53 1.10.2 SomefurtherapplicationsoftheFrenetformulae . . . . . . . . 54 1.10.3 Generalhelices. Lancret’stheorem . . . . . . . . . . . . . . . 56 1.10.4 Bertrandcurves . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.11 Thelocalbehaviourofaparameterizedcurvearoundabiregularpoint . 62 1.12 Thecontactbetweenaspacecurveandaplane . . . . . . . . . . . . . 64 1.13 Thecontactbetweenaspacecurveandasphere. Theosculatingsphere 66 1.14 Existenceanduniquenesstheoremsforparameterizedcurves . . . . . . 68 1.14.1 ThebehaviouroftheFrenetframeunderarigidmotion . . . . . 68 1.14.2 Theuniquenesstheorem . . . . . . . . . . . . . . . . . . . . . 70 1.14.3 Theexistencetheorem . . . . . . . . . . . . . . . . . . . . . . 72 2 Planecurves 75 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.2 Envelopesofplanecurves . . . . . . . . . . . . . . . . . . . . . . . . 75 2.2.1 Curvesgiventhroughanimplicitequation . . . . . . . . . . . . 77 2.2.2 Familiesofcurvesdependingontwoparameters . . . . . . . . 79 2.2.3 Applications: theevoluteofaplanecurve . . . . . . . . . . . . 79 2.3 Thecurvatureofaplanecurve . . . . . . . . . . . . . . . . . . . . . . 81 2.3.1 Thegeometricalinterpretationofthesignedcurvature . . . . . 84 2.4 Thecurvaturecenter. Theevoluteandtheinvoluteofaplanecurve . . . 86 2.5 Theosculatingcircleofacurve . . . . . . . . . . . . . . . . . . . . . . 91 2.6 Theexistenceanduniquenesstheoremforplanecurves . . . . . . . . . 92 3 Theintegrationofthenaturalequationsofacurve 95 3.1 TheRiccatiequationassociatedtothenaturalequationsofacurve . . . 95 3.2 Examplesfortheintegrationofthenaturalequationofaplanecurve . . 96 Problems 103 II Surfaces 113 4 Generaltheoryofsurfaces 115 4.1 Parameterizedsurfaces(patches) . . . . . . . . . . . . . . . . . . . . . 115 4.2 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2.1 Representationsofsurfaces. . . . . . . . . . . . . . . . . . . . 116 4.3 Theequivalenceoflocalparameterizations . . . . . . . . . . . . . . . . 119 4.4 Curvesonasurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Contents 7 4.5 Thetangentvectorspace,thetangentplaneandthenormaltoasurface . 123 4.6 Theorientationofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . 127 4.7 Differentiablemapsonasurface . . . . . . . . . . . . . . . . . . . . . 130 4.8 Thedifferentialofasmoothmapbetweensurfaces . . . . . . . . . . . 134 4.9 Thesphericalmapandtheshapeoperatorofanorientedsurface . . . . 136 4.10 Thefirstfundamentalformofasurface . . . . . . . . . . . . . . . . . 139 4.10.1 Firstapplications . . . . . . . . . . . . . . . . . . . . . . . . . 140 Thelengthofasegmentofcurveonasurface . . . . . . . . . . 140 Theangleoftwocurvesonasurface . . . . . . . . . . . . . . . 141 Theareaofaparameterizedsurface . . . . . . . . . . . . . . . 142 4.11 Thematrixoftheshapeoperator . . . . . . . . . . . . . . . . . . . . . 144 4.12 Thesecondfundamentalformofanorientedsurface . . . . . . . . . . 146 4.13 Thenormalcurvature. TheMeusnier’stheorem . . . . . . . . . . . . . 148 4.14 Asymptoticdirectionsandasymptoticlinesonasurface . . . . . . . . . 150 4.15 Theclassificationofpointsonasurface . . . . . . . . . . . . . . . . . 152 4.16 Principaldirectionsandcurvatures . . . . . . . . . . . . . . . . . . . . 156 4.16.1 Thedeterminationofthelinesofcurvature . . . . . . . . . . . 159 4.16.2 Thecomputationofthecurvaturesofasurface . . . . . . . . . 161 4.17 Thefundamentalequationsofasurface . . . . . . . . . . . . . . . . . 162 4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.17.2 Thedifferentiationrules. Christoffel’scoefficients . . . . . . . . 162 Christoffel’sandWeingarten’scoefficientsincurvaturecoordinates164 4.17.3 TheGauss’andCodazzi-Mainardi’sequationsforasurface . . 165 4.17.4 Thefundamentaltheoremofsurfacetheory . . . . . . . . . . . 167 4.18 TheGauss’egregiumtheorem . . . . . . . . . . . . . . . . . . . . . . 172 4.19 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.19.2 TheDarbouxframe. Thegeodesiccurvatureandgeodesictorsion 175 4.19.3 Geodesiclines . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Examplesofgeodesics . . . . . . . . . . . . . . . . . . . . . . 181 4.19.4 Liouvillesurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 182 5 Specialclassesofsurfaces 185 5.1 Ruledsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.1.1 Generalruledsurfaces . . . . . . . . . . . . . . . . . . . . . . 185 Theparameterizationofaruledsurface . . . . . . . . . . . . . 186 Thetangentplaneandthefirstfundamentalformofaruledsurface187 5.1.2 TheGaussiancurvatureofaruledsurface . . . . . . . . . . . . 189 8 Contents 5.1.3 Envelopeofafamilyofsurfaces . . . . . . . . . . . . . . . . . 190 5.1.4 Developablesurfaces . . . . . . . . . . . . . . . . . . . . . . . 191 Developablesurfacesasenvelopesofaone-parameterfamilyof planes. Theregressionedgeofadevelopablesurface . 193 5.1.5 Developable surfaces associated to the Frenet frame of a space curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Theenvelopeofthefamilyofosculatingplanes . . . . . . . . . 197 Theenvelopeofthefamilyofnormalplanes(thepolarsurface) 198 Theenvelopeofthefamilyofrectifyingplanesofaspacecurves 199 5.2 Minimalsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.2.1 Definitionandgeneralproperties . . . . . . . . . . . . . . . . . 200 5.2.2 Minimalsurfacesofrevolution . . . . . . . . . . . . . . . . . . 206 5.2.3 Ruledminimalsurfaces. . . . . . . . . . . . . . . . . . . . . . 207 5.3 Surfacesofconstantcurvature . . . . . . . . . . . . . . . . . . . . . . 213 Problems 217 Bibliography 229 Index 233 Foreword Thisbookisbasedonthelecturenotesofseveralcoursesonthedifferentialgeometryof curvesandsurfacesthatIgaveduringthelasteightyears. Thesecourseswereaddressed to different audience and, as such, the lecture notes have been revised again and again andoncealmostentirelyrewritten. Itriedtoexposethematerialinamodernlanguage, without loosing the contact with the intuition. There is a common believe that mathe- matics is eternal and it never changes, unlike other sciences. I think that nothing could befartherfromthetruth. Mathematicsdoeschangecontinuously,eitherfortheneedof more rigor, either for the need of more structure. The mathematics we are doing and teaching today is essentially different (and not only as language!) from the mathemat- ics of the nineteenth century. This variation also applies, of course, to the teaching of mathematics. Thereareseveralreasonwhyweneedtorenewthetextbooksfromtimetotime: • themathematicsevolvesandweneedtointroducenewresultsandnotions; • somepartsofspecificcoursesbecomeobsoleteandshouldberemoved; • thecurriculumasawholeevolvesandwehavetokeeppacewiththedevelopments oftheneighboringfields; • some courses move from the undergraduate level to the graduate level or (more often)theotherwayaroundandwehavetomodifythecontentsandthelanguage accordingly. TheseareonlysomeofthereasonsIdecidedtowritethisbook. 10 Foreword The material included is fairly classical. I preferred to discuss in more details the foundations rather than introduce more and more topics. In particular, unlike most of books of this kind, I decided not to discuss at all problems of global differential geom- etry. Ibelieveitisnotveryusefultodiscusssuchtopics,ifthereisnotenoughroomto givethemalltheattentiontheydeserve. Also,theLevi-Civitaparallelismandthecovari- ant differentiation are not discussed, because I think they would feel a lot better in the courseofRiemanniangeometry. Thenotionofdifferentiablemanifoldisnotintroduced butitisonlyonestepaway. Infact,Idecidedtoadaptthelanguageofthecourseinsuch awaytoqualifyforaprerequisiteforacourseinsmoothmanifolds. Isnoteasytobeoriginalwhenyouteachsomethingthathavebeentaughtagainand againformorethantwocenturiesand,ontheotherhand, shouldwebealwaysoriginal atanycost?! Assuch,itgoeswithoutsayingthatthisbookowesmuchtomanyexcellent classical or more modern textbooks. All of them are mentioned in the bibliography. I havetomention,however,thebooksofGray,doCarmoandFedenko. IhavetoconfessthatIamnotaself-educatedperson(notentirely,anyway),andmy ideasregardingdifferentialgeometryhavebeeninfluencedbymyteachers(thelateProf. MarianT¸arina˘ andProf. DorinAndrica),aswellbythecolleagueswithwhomIhadthe pleasuretoworkandtosharetheideas,Prof. PavelEnghis¸,CsabaVarga,CornelPintea, DanielVa˘ca˘re¸tuandLianaT¸opan. This book would have never existed without my students and their enthusiasm (or lackofenthusiasm)determinedmanychangesduringtheyears. A book is not something that you leave at the office and this one was no exception and it would never have been finished without the infinite patience of my wife who toleratedthe(undeterministic)chaoscreatedbybooksandmanuscripts. Cluj-Napoca,April2005.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.