ebook img

Lectures on Invariant Theory PDF

232 Pages·2003·0.88 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Invariant Theory

LECTURES ON INVARIANT THEORY IGOR V. DOLGACHEV February 12, 2003 ii Preface This book is based on one-semester graduate courses I gave at Michigan in 1994 and 1998, and at Harvard in 1999. A part of the book is borrowed from an earlier version of my lecture notes which were published by the Seoul National Univer- sity [22]. The main changes consist of including several chapters on algebraic invariant theory, simplifying and correcting proofs, and adding more examples from classical algebraic geometry. The last Lecture of [22] which contains some applications to construction of moduli spaces has been omitted. The book is lit- erally intended to be a first course in the subject to motivate a beginner to study more. AneweditionofD.Mumford’sbookGeometricInvariantTheorywithap- pendices by J. Fogarty and F. Kirwan [75] as well as a survey article of V. Popov and E. Vinberg [91] will help the reader to navigate in this broad and old subject ofmathematics. Mostoftheresultsandtheirproofsdiscussedinthepresentbook can be found in the literature. We include some of the extensive bibliography of the subject (with no claim for completeness). The main purpose of this book is to give a short and self-contained exposition of the main ideas of the theory. The sole novelty is including many examples illustrating the dependence of the quo- tientonalinearizationoftheactionaswellasincludingsomebasicconstructions intoricgeometryasexamplesoftorusactionsonaffinespace. Wealsogivemany examples related to classical algebraic geometry. Each chapter ends with a set of exercises and bibliographical notes. We assume only minimal prerequisites for students: a basic knowledge of algebraic geometry covered in the first two chap- tersofShafarevich’sbook[104]and/orHartshorne’sbook[46],agoodknowledge of multilinear algebra and some rudiments of the theory of linear representations of groups. Although we often use some of the theory of affine algebraic groups, theknowledgeofthegroupGL isenoughforourpurpose. n I am grateful to some of my students and colleagues for critical remarks and catching numerous mistakesin my lecture notes. Special thanks go toAna-Maria Castravet,MihneaPopa,JanisStipinsandIvanArzhantsev. iii Contents Preface iii Introduction ix 1 Thesymbolicmethod 1 1.1 Firstexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Polarizationandrestitution . . . . . . . . . . . . . . . . . . . . . 4 1.3 Bracketfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 TheFirstFundamentalTheorem 17 2.1 Theomega-operator . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Theproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Grassmannvarieties . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Thestraighteningalgorithm . . . . . . . . . . . . . . . . . . . . . 22 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Reductivealgebraicgroups 29 3.1 TheGordan–HilbertTheorem . . . . . . . . . . . . . . . . . . . 29 3.2 Theunitarytrick . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Affinealgebraicgroups . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Nagata’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 v vi 4 Hilbert’sFourteenthProblem 47 4.1 Theproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 TheWeitzenbo¨ckTheorem . . . . . . . . . . . . . . . . . . . . . 49 4.3 Nagata’scounterexample . . . . . . . . . . . . . . . . . . . . . . 52 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Algebraofcovariants 65 5.1 Examplesofcovariants . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Covariantsofanaction . . . . . . . . . . . . . . . . . . . . . . . 69 5.3 Linearrepresentationsofreductivegroups . . . . . . . . . . . . . 72 5.4 Dominantweights . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.5 TheCayley–Sylvesterformula . . . . . . . . . . . . . . . . . . . 79 5.6 Standardtableauxagain . . . . . . . . . . . . . . . . . . . . . . . 84 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6 Quotients 91 6.1 Categoricalandgeometricquotients . . . . . . . . . . . . . . . . 91 6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3 Rationalquotients . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Linearizationofactions 103 7.1 Linearizedlinebundles . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Theexistenceoflinearization . . . . . . . . . . . . . . . . . . . . 107 7.3 Linearizationofanaction . . . . . . . . . . . . . . . . . . . . . . 110 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8 Stability 115 8.1 Stablepoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2 Theexistenceofaquotient . . . . . . . . . . . . . . . . . . . . . 117 8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 vii 9 Numericalcriterionofstability 129 9.1 Thefunctionµ(x,λ) . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Thenumericalcriterion . . . . . . . . . . . . . . . . . . . . . . . 132 9.3 Theproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.4 Theweightpolytope . . . . . . . . . . . . . . . . . . . . . . . . 135 9.5 Kempf-stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10 Projectivehypersurfaces 145 10.1 Nonsingularhypersurfaces . . . . . . . . . . . . . . . . . . . . . 145 10.2 Binaryforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.3 Planecubics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 10.4 Cubicsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 BibliographicalNotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11 Configurationsoflinearsubspaces 165 11.1 Stableconfigurations . . . . . . . . . . . . . . . . . . . . . . . . 165 11.2 PointsinPn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11.3 LinesinP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 12 Toricvarieties 187 12.1 Actionsofatorusonanaffinespace . . . . . . . . . . . . . . . . 187 12.2 Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Bibliographicalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Bibliography 205 IndexofNotation 215 Index 217 Introduction Geometric invariant theory arises in an attempt to construct a quotient of an al- gebraic variety X by an algebraic action of a linear algebraic group G. In many applications X is the parametrizing space of certain geometric objects (algebraic curves,vectorbundles,etc.) andtheequivalencerelationontheobjectsisdefined by a group action. The main problem here is that the quotient space X/G may not exist in the category of algebraic varieties. The reason is rather simple. Since one expects that the canonical projection f : X → X/G is a regular map of al- gebraic varieties and so has closed fibres, all orbits must be closed subsets in the Zariski topology of X. This rarely happens when G is not a finite group. A pos- sible solution to this problem is to restrict the action to an invariant open Zariski subset U, as large as possible, so that U → U/G exists. The geometric invariant theory (GIT) suggests a method for choosing such a set so that the quotient is a quasi-projective algebraic variety. The idea goes back to David Hilbert. Suppose X = V is a linear space and G is a linear algebraic group acting on V via its linearrepresentation. ThesetofpolynomialfunctionsonV invariantwithrespect tothisactionisacommutativealgebraAoverthegroundfield. Hilbertprovesthat A is finitely generated if G = SL or GL and any set of generators f ,...,f n n 1 N of A defines an invariant regular map from X to some affine algebraic variety Y contained in affine space AN whose ring of polynomial functions is isomorphic to A. By a theorem of Nagata the same is true for any reductive linear algebraic group. The map f : X → Y has a universal property for G-invariant maps of X and is called the categorical quotient. The inverse image of the origin is the closed subvariety defined by all invariant homogeneous polynomials of positive degree. It is called the null-cone. Its points cannot be distinguished by invariant functions; they are called unstable points. The remaining points are called semi- stable points. When we pass to the projective space P(V) associated to V, the images of semi-stable points form an invariant open subset P(V)ss and the map f induces a regular map f¯ : P(V)ss → Y¯, where Y¯ (denoted by P(V)ss//G) is ix x INTRODUCTION a projective algebraic variety with the projective coordinate algebra isomorphic to A. In applications considered by Hilbert, P(V) parametrizes projective hyper- ¯ surfaces of certain degree and dimension, and the projective algebraic variety Y is the “moduli space” of these hypersurfaces. The hypersurfaces represented by unstable points are left out from the moduli space; they are “too degenerate”. A ¯ nonsingularhypersurfaceisalwaysrepresentedbyasemi-stablepoint. SinceY is a projective variety, it is considered as a “compactification” of the moduli space of nonsingular hypersurfaces. The fibres of the map P(V)ss → P(V)ss//G are not orbits in general; however, each fibre contains a unique closed orbit so that P(V)ss//Gparametrizesclosedorbitsinthesetofsemi-stablepoints. Sincetheequationsofthenull-conearehardtofindwithoutcomputingexpli- citly the ring of invariant polynomials, one uses another approach. This approach is to describe the set of semi-stable points by using the Hilbert–Mumford numer- ical criterion of stability. In many cases it allows one to determine the set P(V)ss veryexplicitlyandtodistinguishstablepointsamongsemi-stableones. Theseare the points whose orbits are closed in P(V)ss and whose stabilizer subgroups are finite. The restriction of the map P(V)ss → P(V)ss//G to the set of stable points P(V)s isanorbitmapP(V)s → P(V)s/G. Itiscalledageometricquotient. More generally, if G is a reductive algebraic group acting on a projective al- gebraic variety X, the GIT approach to constructing the quotient consists of the following steps. First one chooses a linearization of the action, a G-equivariant embedding of X into a projective space P(V) with a linear action of G as above. The choice of a linearization is a parameter of the construction; it is defined by a G-linearized ample line bundle on X. Then one sets Xss = X ∩ P(V)ss and definesthecategoricalquotientXss → Xss//Gastherestrictionofthecategorical quotient P(V)ss → P(V)ss//G. The image variety Xss//G is a closed subvariety ofP(V)ss//G. Letusgiveabriefcommentonthecontentofthebook. In Chapters 1 and 2 we consider the classical example of invariant theory in which the general linear group GL(V) of a vector space V of dimension n over a field k acts naturally on the space of homogeneneous polynomials Pol (V) of d some degree d. We explain the classical symbolic method which allows one to identify an invariant polynomial function of degree m on this space with an ele- ment of the projective coordinate algebra k[Gr(n,m)] on the Grassmann variety Gr(n,m)ofn-dimensionallinearsubspacesinkm initsPlu¨ckerembedding. This interpretationisbasedontheFirstFundamentalTheoremofInvariantTheory. The proof of this theorem uses a rather technical algebraic tool, the so-called Clebsch omega-operator. Wechoosethislessconceptualapproachtoshowtheflavorofthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.