ebook img

Lectures on Dynamical Systems, Structural Stability, and their Applications PDF

471 Pages·1992·27.499 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on Dynamical Systems, Structural Stability, and their Applications

Lectures on Dynamical Systems, Structural Stability and their Applications KOTIKK. LEE Dept. of Electrical and Computer Engineering University of Colorado h World Scientific f" ' Singapore • New Jersey • London • Hong Kong Published by World Scientific Publishing Co. Pte. Ltd. P 0 Box 128, Farrer Road, Singapore 9128 USA office: Suite IB, 1060 Main Street, River Edge, NJ 07661 UK office: 73 Lynton Mead, Toueridge, London N20 8DH LECTURES ON DYNAMICAL SYSTEMS, STRUCTURAL STABILITY AND THEIR APPLICATIONS Copyright© 1992 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof. may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without wrillen permission from the Publisher. ISBN 9971-50-965-2 Printed in Singapore by JBW Printers and Binders Pte. Ltd. Dedicated to Peter G. Bergmann and Heinz Helfenstein, who taught me physics and mathematics, and to Lydia, together they taught me humanity. v PREFACE In this past decade, we have witnessed the enormous growth of an interdisciplinary field of study, namely, dynamical systems. Yet, dynamical systems, as a subfield of mathematics, has been established since late last century by Poincare [1881], and reinforced by Liapunov (1892]. Parts of such a surge are due to many major advances in differential topology, the geometric theory of differential equations, algebraic geometry, nonlinear functional analysis, and nonlinear global analysis, just to name a few. This is partly due to computers being readily available. Nowadays, any second-year college student can use a personal computer to program the evolution of a nonlinear difference equation and finq all kinds of chaotic behavior. With the new level of sophistication of graphics, it can evolve into "mathematical entertainment" or "arts". Each popular science or engineering magazine has at least one article on nonlinear dynamical systems a year. It not only caught the fascination of the scientists, but also attracted the attention of the enlightened public. Ten to fifteen years ago, there were but a dozen papers on dynamical systems in each major mathematics or physics journal per year. At present, the majority of these journals contain sections on nonlinear sciences, and indeed there are several new journals solely devoted to this subject. Nonetheless, the communication and infusion of knowledge between the mathematicians working on the analytic approach and the scientists and engineers working mostly on the applications and numerical simulations have been less than ideal. Part of the reason is cultural. Mathematicians tend to approach the problem in a more generic sense, that is, they tend to ask questions and look for answers for more general properties and the underlying structures of the systems. Books written by mathematicians usually treat the subject vii with mathematical rigor, but lack of some motivation for wanting to study the underlying mathematical structures of the system. The treatment by scientists and engineers usually encompasses too many details and misses the underlying structures which may transcend the usual boundaries of various disciplines. Thus, scientists and engineers may not be aware of the advances of the same type of problems in other disciplines. We shall give examples of such underlying mathematical structures for diverse disciplines. This volume intends to bridge the gap between these two categories of books treating nonlinear dynamical systems. Thus, we would like to bridge the gap and foster communication between scientists and mathematicians. In the following, proofs of theorems are usually not given. Instead, examples are provided so that the readers can get the meaning of the theorems and definitions. In other words, we would like the readers to get some sense of the concepts and techniques of the mathematics as well as its "culture". This volume is based on the lecture notes of a graduate course I gave in 1983-4 while I was with TRW. Chapter 1 introduces the concept of dynamical systems and stability with examples from physics, biology, and economics. We want to point out that even though the differential or difference equations governing those phenomena are different, nonetheless, the mathematical procedures in analyzing them are the same. We also try to motivate the reader about the concept and the need to study the structural stability. In Chapter 2, we assemble most of the definitions and theorems about basic properties of algebra, points set (also called general) topology, algebraic and differential topology, differentiable manifolds and differential geometry, which are needed in the course of the lectures. Our main purpose is to establish notations, terminology, concepts and structures. We provide definitions, examples, and essential results without giving the arguments of proof. The material presented is slightly more than absolutely viii necessary for the course of this lecture series. For instance, we certainly can get by without explicitly talking about algebraic topology, such as homotopy and homology. Nonetheless, we do utilize the concepts of orientable manifolds or spaces so that an everywhere non-zero volume element can be found. We also discuss the connected components and connected sums of a state space. Nor do we have to discuss tubular neighborhoods, even though when dealing with return maps, the stability of orbits and periodic orbits, etc. we implicitly use the concept of tubular neighborhoods. Nonetheless, these and many other concepts and terminology are frequently used in research literature. It is also our intent to introduce the reader to a more sophisticated mathematical framework so that when the reader ventures to research literature or further reading, he will not feel totally lost due to different "culture" or terminology. Furthermore, in global theory, the state spaces may be differentiable manifolds with nontrivial topology. In such cases, concepts from algebraic topology are at times essential to the understanding. In light of the above remarks, for the first reading the reader may want to skip Section 2.3, part of Section 2.4, de Rham cohomology part of Section 2.8 and Section 2.9. The subjects discussed in Chapter 3 are not extensively utilized in the subsequent chapters, at least not explicitly. Nonetheless, some of the concepts and even terminology do find their way to our later discussions. This chapter is included, and indeed is lectured, to prepare the readers with some concepts and understanding about global analysis in general, and some techniques important to the global theory of dynamical systems. In particular, the reader may find it useful when they venture to theoretically oriented research literature. In the next chapter, we shall discuss the general theory of dynamical systems. Most of the machinary developed in the last chapter is not used immediately. Only in the last section of Chapter 4, the idea of linearization of nonlinear ix differential operators will be utilized for the discussion of linearization of dynamical systems. Nor does Chapter 5 depend on the material of Chapter 3. As a consequence, one may want to proceed from Chapter 2 to Chapters 4 and 5, except Section 6 of Chapter 4. Then come back to Chapter 3 and continue to Chapter 6. In Section 4.7 we briefly discuss the linearization process based on some results from Chapter 3. For most scientists and engineers, the linearization process is "trivial". Everyone has done this since their freshman year many times. Unfortunately, the linearization process is the most misunderstood and frequently mistaken procedure for scientists and engineers in dealing with nonlinear phenomena and nonlinear dynamical systems at large. This is particularly true for highly nonlinear systems. Two illustrations from our earlier training in mathematics can make the point clear. First, in our freshman calculus course, we learned about the condition of continuity of a function at a point, and its derivative at that point. For the derivative to have a meaning, not only the change of the independent variable, say, ~x, has to be very small (i.e., local), but also the limits lim x ~ O+ ~YI ~x and lim x ~ 0_ ~y;~x agree at x = x0• In other words, the usual linearization makes sense, only when it is done locally, and any "displacement" from the point has to be consistent. The consistency can be illustrated by the following example. As we shall discuss in Chapter 2, a differentiable manifold M is a topological manifold (a topological space with certain nice properties) endowed with a differentiable structure. For any two points p and q in M, A, B are sufficiently small neighborhoods of p and q in M respectively. At p and q in A and B, a rectangular coordinate system can be attached to each of p and q, and every variable looks linear in A and B. What makes the coordinate system or the differentiable structure go beyond the confine of A or B is that if the intersection of A and B is non-empty, then the coordinate values in A and B have to agree at all points in the X intersection of A and B. That is, the differentiable structure has to be consistently and continuously agreed between A to B. Consequently, for a highly nonlinear system when one linearizes such a system, one has to be certain that the linearization procedure is "consistent" in the above sense. Otherwise, except at or very near the equilibrium point(s) in the phase space, one has no assurance as to the correctness of the results of linearization. Related to the above discussion of the linearization procedure, we would also like to caution the reader about numerical simulation of nonlinear dynamical systems, even when only dealing with a local situation. First and foremost, do not just code the differential equations and let the computer do the rest. One has to analyze the characteristics of the system, namely, how many and what kind of fixed points, periodic orbits, attractors, etc. Then, let the computer do the dirty work, and compare with the analysis to ~ee whether or not the numerical simulation agrees with the analysis on the number and type of characteristics. Otherwise, there is no way one can be sure the simulation is correct and meaningful. Another important point sometimes scientists and engineers have overlooked is whether or not the system has a Cauchy data set. If the system does not admit a Cauchy data set, it is tantamount to say that the system does not admit a unique time. Thus, the time evolution of the system loses its meaning. One may argue that who cares about t ~ ~. But even for a finite t, the system may become unpredictable, with or without chaos, etc. It is also appropriate to point out a practical point which relates to the numerical schemes for studying the nonlinear dynamical system. The implicit method is a very popular and efficient scheme to study the linear or weakly nonlinear differential equations. But for highly nonlinear systems, this scheme may leads to erroneous results. This is because the interpolation definitely introduces errors, xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.