ebook img

Lectures on contact 3-manifolds, holomorphic curves and intersection theory PDF

197 Pages·2020·1.551 MB·English
by  WendlChris
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on contact 3-manifolds, holomorphic curves and intersection theory

CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 220 LecturesonContact3-Manifolds,HolomorphicCurves andIntersectionTheory CAMBRIDGE TRACTS IN MATHEMATICS GENERALEDITORS B.BOLLOBA´S,W.FULTON,F.KIRWAN, P.SARNAK,B.SIMON,B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 186. Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187. Convexity:AnAnalyticViewpoint.ByB.SIMON 188. ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDAR andJ.R.PARTINGTON 189. NonlinearPerron–FrobeniusTheory.ByB.LEMMENSandR.NUSSBAUM 190. JordanStructuresinGeometryandAnalysis.ByC.-H.CHU 191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.OSSWALD 192. NormalApproximationswithMalliavinCalculus.ByI.NOURDINandG.PECCATI 193. DistributionModuloOneandDiophantineApproximation.ByY.BUGEAUD 194. MathematicsofTwo-DimensionalTurbulence.ByS.KUKSINandA.SHIRIKYAN 195. AUniversalConstructionforGroupsActingFreelyonRealTrees. ByI.CHISWELLandT.MU¨LLER 196. TheTheoryofHardy’sZ-Function.ByA.IVIC´ 197. InducedRepresentationsofLocallyCompactGroups.ByE.KANIUTHandK.F.TAYLOR 198. TopicsinCriticalPointTheory.ByK.PERERAandM.SCHECHTER 199. CombinatoricsofMinusculeRepresentations.ByR.M.GREEN 200. SingularitiesoftheMinimalModelProgram.ByJ.KOLLA´R 201. CoherenceinThree-DimensionalCategoryTheory.ByN.GURSKI 202. CanonicalRamseyTheoryonPolishSpaces.ByV.KANOVEI,M.SABOK, andJ.ZAPLETAL 203. APrimerontheDirichletSpace.ByO.EL-FALLAH,K.KELLAY,J.MASHREGHI, andT.RANSFORD 204. GroupCohomologyandAlgebraicCycles.ByB.TOTARO 205. RidgeFunctions.ByA.PINKUS 206. ProbabilityonRealLieAlgebras.ByU.FRANZandN.PRIVAULT 207. AuxiliaryPolynomialsinNumberTheory.ByD.MASSER 208. RepresentationsofElementaryAbelianp-GroupsandVectorBundles.ByD.J.BENSON 209. Non-homogeneousRandomWalks.ByM.MENSHIKOV,S.POPOV,andA.WADE 210. FourierIntegralsinClassicalAnalysis(SecondEdition).ByC.D.SOGGE 211. Eigenvalues,MultiplicitiesandGraphs.ByC.R.JOHNSONandC.M.SAIAGO 212. ApplicationsofDiophantineApproximationtoIntegralPointsandTranscendence. ByP.CORVAJAandU.ZANNIER 213. VariationsonaThemeofBorel.ByS.WEINBERGER 214. TheMathieuGroups.ByA.A.IVANOV 215. SlendernessI:Foundations.ByR.DIMITRIC 216. JustificationLogic.ByS.ARTEMOVandM.FITTING 217. DefocusingNonlinearSchro¨dingerEquations.ByB.DODSON 218. TheRandomMatrixTheoryoftheClassicalCompactGroups.ByE.S.MECKES 219. OperatorAnalysis.ByJ.AGLER,J.E.MCCARTHY,andN.J.YOUNG 220. LecturesonContact3-Manifolds,HolomorphicCurvesandIntersectionTheory. ByC.WENDL Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory CHRIS WENDL HumboldtUniversityofBerlin UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108497404 DOI:10.1017/9781108608954 ©ChrisWendl2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-49740-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagevii Acknowledgments ix Introduction:Motivation 1 Lecture1 ClosedHolomorphicCurvesinSymplectic4-Manifolds 11 1.1 SomeExamplesofSymplectic4-Manifolds 11 1.2 McDuff’sCharacterizationofSymplecticRuledSurfaces 17 1.3 LocalFoliationsbyHolomorphicSpheres 22 Lecture2 Intersections,RuledSurfaces,andContactBoundaries 26 2.1 PositivityofIntersectionsandtheAdjunctionFormula 26 2.2 ApplicationtoRuledSurfaces 32 2.3 ContactManifolds,SymplecticFillingsandCobordisms 35 2.4 AsymptoticallyCylindricalHolomorphicCurves 38 Lecture3 AsymptoticsofPuncturedHolomorphicCurves 44 3.1 HolomorphicHalf-CylindersasGradient-FlowLines 45 3.2 AsymptoticFormulasforCylindricalEnds 49 3.3 WindingofAsymptoticEigenfunctions 53 3.4 LocalFoliationsandtheNormalChernNumber 55 Lecture4 IntersectionTheoryforPuncturedHolomorphicCurves 62 4.1 StatementoftheMainResults 62 4.2 RelativeIntersectionNumbersandthe∗-Pairing 66 4.3 AdjunctionFormulas,RelativeandAbsolute 71 Lecture5 SymplecticFillingsofPlanarContact3-Manifolds 77 5.1 OpenBooksandLefschetzFibrations 77 5.2 AClassificationTheoremforSymplecticFillings 83 5.3 SketchoftheProof 86 vi Contents AppendixA PropertiesofPseudoholomorphicCurves 94 A.1 TheClosedCase 94 A.2 CurveswithPunctures 102 AppendixB LocalPositivityofIntersections 108 B.1 RegularityandtheSimilarityPrinciple 108 B.1.1 LinearCauchy–RiemannTypeOperators 109 B.1.2 EllipticRegularity 111 B.1.3 LocalExistenceofHolomorphicSections 120 B.1.4 TheSimilarityPrinciple 123 B.2 TheRepresentationFormula 126 B.2.1 TheGeneralizedTangent-NormalDecomposition 128 B.2.2 ALemmaonNormalPush-Offs 130 B.2.3 LocalCoordinates 134 B.2.4 ConstructingtheNormalPush-Off 137 B.2.5 ConclusionoftheProof 146 B.3 CountingLocalIntersectionsandSingularities 148 AppendixC AQuickSurveyofSiefring’sIntersectionTheory 158 C.1 Preliminaries 158 C.2 TheIntersectionPairing 160 C.3 TheAdjunctionFormula 163 C.4 CoveringRelations 166 C.5 TheIntersectionProductofBuildings 168 C.6 ComparisonwiththeECHLiterature 174 References 177 Index 182 Preface The main portion of this book is a lightly revised set of expository lecture notes written originally for a five-hour minicourse on the intersection theory of punctured holomorphic curves and its applications in 3-dimensional con- tact topology, which I gave as part of the LMS Short Course “Topology in LowDimensions”atDurhamUniversity,August26–30,2013.Theselectures were aimed primarily at students, and they required only a minimal back- ground in holomorphic curve theory since the emphasis was on topological rather than analytical issues. The original appendices were relatively brief, theirpurposebeingtoprovideaquicksurveyofanalyticalbackgroundmate- rial on holomorphic curves that I needed to refer to in the lectures without assuming that students already knew it. In revising the manuscript for publi- cation,Ihaveaddedamotivationalintroduction,andtakentheopportunityto inserttwofurtheradditionsthatIfeltwerelackingfromtheexistingliterature, as a result of which the appendices have become considerably more substan- tial.One(AppendixB)isacompleteproofoflocalpositivityofintersections, includingjustenoughbackgroundmaterialonellipticregularityforastudent familiarwithdistributionsandSobolevspacestoconsiderit“self-contained”; this notably includes a weak version of the Micallef–White theorem, which somereadersmay,Ihope,findeasiertocomprehendthanthedeeperresultin [MW95]thatinspiredit.Theother(AppendixC)isaquicksurveyofSiefring’s intersectiontheoryofpuncturedholomorphiccurves,puttingtheessentialfacts and formulas in as compact a form as possible for the benefit of researchers who need a ready reference. Most of what is in Appendix C also appears in Lectures 3 and 4, but the latter are written in a more pedagogical style that developsthestructureofthetheorybasedonafewcoreideas–whichispre- sumablyhelpfulifyourgoalistounderstandwhythemainresultsaretrue,but lesssoifyoujustneedtolookupaspecificformula,andAppendixCisthere tohelpinthatcase. viii Preface Intersectiontheoryhasplayedaprominentroleinthestudyofclosedsym- plectic 4-manifolds since Gromov’s paper [Gro85] on pseudoholomorphic curves, leading to a myriad of beautiful rigidity results that are either not accessibleornottrueinhigherdimensions.Inthelast15years,thehighlynon- trivial extension of this theory to the case of punctured holomorphic curves, duetoSiefring[Sie08,Sie11],hasledtosimilarlybeautifulresultsaboutcon- tact 3-manifolds and their symplectic fillings. These lectures begin with an overview of the closed case and an easy application (McDuff’s characteriza- tionofsymplecticruledsurfaces),andthenexplaintheessentialsofSiefring’s intersection theory and how to use it in the real world. As a sample applica- tion,Lecture5concludesbydiscussingtheclassificationofsymplecticfillings ofplanarcontactmanifoldsviaLefschetzfibrations[Wen10b]. Howtousetheselecturenotes:Iexpectavarietyofaudiencestofindthese lecture notes useful for a variety of reasons. Since they were written with an audience of students in mind, I did not want to assume too much previous knowledge of symplectic/contact geometry or holomorphic curves, and most of the text reflects that. On the other hand, I also expect a certain number of readers to be experienced researchers who already know the essentials of holomorphiccurvetheory–includingtheadjunctionformulaintheclosedcase –butwouldspecificallyliketolearnabouttheintersectiontheoryforpunctured curves.Forreadersinthiscategory,IrecommendstartingwithAppendixCfor an overview of the basic facts, and then turning back to Lectures 3 and 4 for details whenever necessary. If, on the other hand, you are a student and still getting to know the field of symplectic and contact topology, you’ll probably wishtostartfromthebeginning. Orifyoureallywanttochallengeyourself,feelfreetoreadthewholething backward.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.