ebook img

Lectures on ab-initio applications of Self-Consistent Green's Function PDF

148 Pages·2015·53.06 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures on ab-initio applications of Self-Consistent Green's Function

Mee#ng&with&HAL&QCD&collabora#on& RIKEN&–&2>6&February&2015! Self-consistent Green’s function applications in ab-initio nuclear physics Carlo Barbieri — University of Surrey -1-1V]V] 24O:! dd55//22 ss11//22 pp33//22 pp11//22,, ff77//22 0111...824 01111....8246 MeMe 11..55 pp33//22 pp11//22 dd33//22 00..46 00..46 ωω(n)(n)-3-3S(r,) S(r,) [fm[fm2424OO 00 ..1155--3300 --2255 --2200 --1155 --1100 EE--55FF 00 55 1100 1155 66 44rr [[ffmm]] 22 00 S [MeV] 2n00.234560000 AKCSTciar 00.2 20 10 0 18 20 22 24 26 28 30 32 N Outline! ! Day 1 (formalism):! !- definition of propagator! !- how we can deal with short range physics! !- FRPA/ADC(3) self-energy, Gorkov, and 3NFs diagrams! ! Day 2 (results):! !- studies of chiral interactions in mid mass nuclei! !- impact of 3NFs! !- some words on applications to infinite matter! Current Status of low-energy nuclear physics Composite&system&of&interac#ng&fermions& Experimental& Binding&and&limits&of&stability& programs& Coexistence&of&individual&and&collec6ve&behaviors& RIKEN,&FAIR,&FRIB& Self:organiza6on&and&emerging&phenomena& EOS&of&neutron&star&ma?er& r#process!path…! ( s n o t o r p Unstable&nuclei& neutrons( •  ~3,200!known!isotopes! •  !~7,000!predicted!to!exist! •  Correla;on!characterised! in!full!for!~283!stable(! Nature!473,!25!!(2011);!486,!509!(2012)! Current Status of low-energy nuclear physics Composite&system&of&interac#ng&fermions& Experimental& Binding&and&limits&of&stability& programs& Coexistence&of&individual&and&collec6ve&behaviors& RIKEN,&FAIR,&FRIB& Self:organiza6on&and&emerging&phenomena& EOS&of&neutron&star&ma?er& r#process!path…! II)&Nuclear&correla#ons& ( s n o Fully&known&for&stable&isotopes& t o r [C.&Barbieri&and&W.&H.&Dickhoff,&Prog.&Part.&Nucl.&Phys&52,&377&(2004)]& p & UnstaNbeluet&rnonu:crilceh&in&uclei;&Shell&evolu6on&(far&from&stability)& neutrons( •  ~3,200!known!isotopes! III)&Interdisciplinary&character& •  !~7,000!predicted!to!exist! I)&Understanding&the&nuclear&force& Astrophysics& •  Correla;on!characterised! QCD:derived;&3:nucleon&forces&(3NFs)& Tests&of&the&standard&model& in!full!for!~283!stable(! First&principle&(ab:ini6o)&predic6ons& Other&fermionic&systems:& Nature!473,!25!!(2011);!486,!509!(2012)! &&&ultracold&gasses;&molecules;& Nuclear forces in exotic nuclei 22 K.Muranoetal./PhysicsLettersB735(2014)19–24 Murano!et!al.!(HAL!QCD!coll.)! Nucleon interactions are very Phys.!LeQ.!B!(2014)! complex and difficult to handle Change of regime from stable to dripline isotopes !& Fig.1.Central (S 0and 1), tensor and spin–orbit potentials in parity-odd sector obtained by lattice QCD (left), and their enlargements (right). (For interpretation of the Neurefetrernceos to ncolo=r- inr thiis cfigurhe leg enmd, the areadtert is ereferrred t(o tNhe w eb(cid:6) version oZf this) ar:tic le.) Symmetric matter: - Nc2a1n5I 2neb( 3eo) uufiMrt teetsVdim,r wsuohleaoltwli oniwnng,i t htn hsoαe s=tdigiasn0p .8eorr8fs (i1ho )inmg h(χreer2l a/aotdir.odonet.f r. tf=coeor2 n.tt6rrhi)eb uattn i ouEmnclsNe oi=onn SwV LeIS=lFl1 ow(rr i)bthois tt hhn oessgpeai ntoi-vfs eit nhagenl edpt h saetnnrodon mgsep. niTnoh-lteorsgiepic lafeelt a ptcuoetrneetnsr ataila glpr eionet e Rnqeutfia.all[is2t,a 7tt]ih.veerlye N ≈ Z - Sk2foyr km2≤1.m25 [GeeV2t]r(kay ≤ √e5×n2πe/L) rwigthiny sta tistical errors. mmaeyd iubme ad ivsetrayn cwe e(ark at1trfamct)i.v eH opwocekveetr , ocf olnessisd ethrianng at hfee wst aMtiesVti caatl 4.3. Extractions of potentials and systematic errors+, its existence should be carefully examined - New shell closures in future studies. The potential for the spin-singlet sector at NLO can be easily We make a technical comment. We sometimes observe large Tensor force (p-n)! extracted from the equation tcioanl dbitoiuonn dnaurimesb, ewrsh fiocrh Egqi.ve(1s 9r)is(ew ittoh tphorienet ss owuirtche sl)a rngeea rs ttahteis stipcaa-l DVCI=,rS0=i0p(rl)iRn($re,ts;J&o)f,R&n($ri,tt;rJo)gen&and&fluorine&isoerrtoors pat er+s1!–1.5fmin Fig.1. = R($r,!t;J),(Dt−13HN0)R1(5$r,Nt";J) 21N 23N(18) 4.42.7 SNcattering phase shifts and effective potentials TFhorrecee- (n3uNcFle)!on tfaguoinrssroetd iu cJ$tp!wah $le1ae n= s 08f oda&iJ00ecFsfite( ns$r(t )eTho, 1a −fHa t)pn (,lo$ r o!")dticne’oa nn≡mlte ipir#an!" olasptg.ter ∈eoNnOddto iutaFbec"lβy∗s tαt , h1w(ΛVa#gPiStC$rIΩt1 ,R)hh,S H G"e,"w arα"V2enhβ T e4I(2aargn.ave$rM0dne ) αrd, ifaen wDmgVV ehttLh I$i=Scoe1,h v fa 4eormrr1ele lNdo tuihw∂∂ntce22vie nasc−gr ui sawbt∂∂naitec-t, cttchhuaeillscaF utposelorea tnctqeitonunitogat nin oas,tn lci wltayiaste tt tie nvhtroeehin t es pgrtao eu ptfdpoehihnreaeytss is eaoii nclfs av bhtleh uisfoettt bs iagi snlfaesrttrooeev mr asaabcc atltnehtiot aeeant rusosi ,rnb meigtt a eoipinnsfh tediaidones netspeie rorsdaaht beciafltnetbitos oi,tna voslse si,cn. . abcIIlnney- Vunde$r 1th2e 0ro"tation gin the cubi!c group. The result for VCI=,S00(r)is particular, we study whether the LS potential of Fig.1leads to at- EMepacfg.s.VoatlC roIns= ;tF Shtt$$$1bo=ehoerd1rr 111 et t(d ihre864dne) eti000 F dseFstCrJi!ipafmgfni.en(icr1nr-ee)tesnrbd+.ityp f lVsregootrTIm ue=sere1 cntc(eh !"rtscoe),i r Fr,eJc TJqtlehus(ra=,er t)eiwo J+uhnniVc(khALnI S=−1os1hw)(,o nrw)J Ffsu LJ!"(naST c(s1−trtior))o,n!" =nsJ!"g uK rp(JeE =pt−o(!u"r) l(N)s1i(Lo9oOnr)E22 NNx!"p%%mtittdNvnoer33i(agnn urNNacsFs)gWlut!i"t ioesmii#g≡sve-rrif.G e pnu=p c1aealbdilao.1uqf lel3yt(us$cHher sua/nateitflahbvtraoinioe)eitrao , en e l rn x astttopfh whooit(sen eari−c tm tmahtisνcohli csi1emnen,at( n .gthr isttc/ eTrcev bpa ahrt()laiteah rn2trb )ee)agau o r m n+niv≡spndechehg o atoa er#2spprsrrtp(ohee riiNt lba/dn=easgs bi–1atnh≡esu)eottsi 3dsfiasr0ateahb nsl.xfiiiisc 1tfep,tbe5t sxs( y5 pp−p b a5iao(nserν−roteh fa2etml aν(mvhnpvriiet/(eneiiiorabrtsg3/frel ) Pos,b2r it,rn2i) )hazm2tseewcr) f ehdooshSdda hrce nu wwohrrncteweriieheöttaanhhdles--. J(T2−)), dominat1e5dF by 31P70F, 3P1and 3P2–3F22, 3reFspec2ti5vFely, where 29Fsonab#ly. T$he resultant fit parameters and χ2/d.o.f. are given in [A.!FCCJip(or)l≡lonRe($r,,!Ct;BJ,!P),.R!N($ra,tv;rJá;)l,,!Phys.!Rev.!LeQ.!111,!0625Ta0b1Tleh!e(1 2.s0ca1tt3er)i]n!g observables are obtained from the long distance FTJ(r)≡!R($r,t;J),S12R($r,t;J" ), bine hFaigv.io2r. sT ohfe liinnneaerrl ye rirnodre ipse sntdateinstti craelg, uwlahri lseo ltuhtei oonust, earn odn aer eis sshtaotwisn- KFLJJS((rr))≡≡!!RR(($r$r,,tt;;JJ)),,$L(D·t$S−R(H$r,0t);RJ($r)","t,;J). stthiycesat let rmaunandtc iascy teisortnerom ro,af wttiche ect oadkmeerb iiivnnatetoidv aeicn ce oqxuupnaatdn rstaihoteun r uean.n cHde erftrraeoi,nm tto y t ehaserti iscmihnaogti ecfr eto hmoef I(ffneobrr lueFmnieg )c.,Ae 1.−1o), b, WwtT!aee1−i n a,oe lbsTdos2 −e fprrsovlooemtu t rVhcAeaCI−1=;stS 1,=(i ni1T)s (1−ttreh),a e(dE rc −ededno)set,o rsVau lnrTI c=opet1os (ts.re "h)n(oTt(whibael la acV rkesC)Iis=g uSan1lnti1fi d(oc rVab)ntLIaiSt=s i1 ndr(eierfd-)- cfiavousaft stlluiapontechegisaa spbtfeeuhe dnatsw schweteii fioesttnhnsh si fto tth−nfsoe atr a0 tl srt=couhh nea8o ctipa acttoeni−to deon tn7f0 to ifi=afa stltt s7hsi.n, ye Tgas otnd ef edumer nitsavatctaiktmitiecoi vanedetrsie rf e fofexsorrypsres.a nttnAechsmeedios ea npptoi,ofe c wtn ceedeenrne trcntioaarcralless-l pulsive, (ii) the tensor potential VTI=1(r)is positive an;d =weak com- is estimated by changing the fitting function to a Yukawa-type. It pared to VCI=S11(r)and VLIS=1(r), and (iii) the spin–orbit potential turns out that the former dominates the systematic error except ;= Reach of ab-initio theories in recent years ! Degenerate system (open shells, deformations…) ! Hamiltoninan, including three nucleon forces! 88Ni! " 2014" Ab-initio methods zoology QCD! Chiral!EFT! Nuclear!forces:! Phenomenologic! Derive!from! !(QCD!symm)! models! !NN,!3NF,!etc..! L#QCD! (AV18,!CD#Bonn)! 2#,!3#,!N#body! “hard”! “hard”! “sod”! “super!sod”! Hyp!Harm! SRG!evolu;on! Self&Cons.& NCSM! Green’s&fnct& Monte!Carlo! IMSRG! Coupled! GFMC,!AFDMC! L#EFT! cluster! Infinite&maXer&&&& Light&nuclei&& mid&mass&<&132Sn& Astroph.&applica#ons! (cid:1) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) In Green’s Function Monte Carlo one starts with a “trial” wave function, and lets it propagate in time: ! For t"-i∞, this goes to the gs wave function! Better to break the time in many little intervals Δt, Green’s function (GF)(cid:1) Monte Carlo integral (MC)(cid:1) ! GFMC is a method to compute the exact wave function. (typically works for few bodies, A ≤ 12 in nuclei).(cid:1) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) !M  BGF is a method that DO NOT compute the wave function: It assumes that the system is in its ground state and attempts at calculating directly simple excitations from it •L  arge N (number of particles) •T  he N-body ground state plays the role of vacuum (of excitations) •D  egrees of freedom are a few particles (or holes) on top of this vacuum •I  t is a microscopic method (and capable of “ab-initio” calculations) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) Don’t get confused: Green’s function Monte Carlo (GFMC) and Many-body Green’s Functions are NOT the same method!!!!!!

Description:
In Green's Function Monte Carlo one starts with a “trial” wave function, and The one body propagator (≡Green's function) .. C70, 014606 (2004).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.