Mee#ng&with&HAL&QCD&collabora#on& RIKEN&–&2>6&February&2015! Self-consistent Green’s function applications in ab-initio nuclear physics Carlo Barbieri — University of Surrey -1-1V]V] 24O:! dd55//22 ss11//22 pp33//22 pp11//22,, ff77//22 0111...824 01111....8246 MeMe 11..55 pp33//22 pp11//22 dd33//22 00..46 00..46 ωω(n)(n)-3-3S(r,) S(r,) [fm[fm2424OO 00 ..1155--3300 --2255 --2200 --1155 --1100 EE--55FF 00 55 1100 1155 66 44rr [[ffmm]] 22 00 S [MeV] 2n00.234560000 AKCSTciar 00.2 20 10 0 18 20 22 24 26 28 30 32 N Outline! ! Day 1 (formalism):! !- definition of propagator! !- how we can deal with short range physics! !- FRPA/ADC(3) self-energy, Gorkov, and 3NFs diagrams! ! Day 2 (results):! !- studies of chiral interactions in mid mass nuclei! !- impact of 3NFs! !- some words on applications to infinite matter! Current Status of low-energy nuclear physics Composite&system&of&interac#ng&fermions& Experimental& Binding&and&limits&of&stability& programs& Coexistence&of&individual&and&collec6ve&behaviors& RIKEN,&FAIR,&FRIB& Self:organiza6on&and&emerging&phenomena& EOS&of&neutron&star&ma?er& r#process!path…! ( s n o t o r p Unstable&nuclei& neutrons( • ~3,200!known!isotopes! • !~7,000!predicted!to!exist! • Correla;on!characterised! in!full!for!~283!stable(! Nature!473,!25!!(2011);!486,!509!(2012)! Current Status of low-energy nuclear physics Composite&system&of&interac#ng&fermions& Experimental& Binding&and&limits&of&stability& programs& Coexistence&of&individual&and&collec6ve&behaviors& RIKEN,&FAIR,&FRIB& Self:organiza6on&and&emerging&phenomena& EOS&of&neutron&star&ma?er& r#process!path…! II)&Nuclear&correla#ons& ( s n o Fully&known&for&stable&isotopes& t o r [C.&Barbieri&and&W.&H.&Dickhoff,&Prog.&Part.&Nucl.&Phys&52,&377&(2004)]& p & UnstaNbeluet&rnonu:crilceh&in&uclei;&Shell&evolu6on&(far&from&stability)& neutrons( • ~3,200!known!isotopes! III)&Interdisciplinary&character& • !~7,000!predicted!to!exist! I)&Understanding&the&nuclear&force& Astrophysics& • Correla;on!characterised! QCD:derived;&3:nucleon&forces&(3NFs)& Tests&of&the&standard&model& in!full!for!~283!stable(! First&principle&(ab:ini6o)&predic6ons& Other&fermionic&systems:& Nature!473,!25!!(2011);!486,!509!(2012)! &&&ultracold&gasses;&molecules;& Nuclear forces in exotic nuclei 22 K.Muranoetal./PhysicsLettersB735(2014)19–24 Murano!et!al.!(HAL!QCD!coll.)! Nucleon interactions are very Phys.!LeQ.!B!(2014)! complex and difficult to handle Change of regime from stable to dripline isotopes !& Fig.1.Central (S 0and 1), tensor and spin–orbit potentials in parity-odd sector obtained by lattice QCD (left), and their enlargements (right). (For interpretation of the Neurefetrernceos to ncolo=r- inr thiis cfigurhe leg enmd, the areadtert is ereferrred t(o tNhe w eb(cid:6) version oZf this) ar:tic le.) Symmetric matter: - Nc2a1n5I 2neb( 3eo) uufiMrt teetsVdim,r wsuohleaoltwli oniwnng,i t htn hsoαe s=tdigiasn0p .8eorr8fs (i1ho )inmg h(χreer2l a/aotdir.odonet.f r. tf=coeor2 n.tt6rrhi)eb uattn i ouEmnclsNe oi=onn SwV LeIS=lFl1 ow(rr i)bthois tt hhn oessgpeai ntoi-vfs eit nhagenl edpt h saetnnrodon mgsep. niTnoh-lteorsgiepic lafeelt a ptcuoetrneetnsr ataila glpr eionet e Rnqeutfia.all[is2t,a 7tt]ih.veerlye N ≈ Z - Sk2foyr km2≤1.m25 [GeeV2t]r(kay ≤ √e5×n2πe/L) rwigthiny sta tistical errors. mmaeyd iubme ad ivsetrayn cwe e(ark at1trfamct)i.v eH opwocekveetr , ocf olnessisd ethrianng at hfee wst aMtiesVti caatl 4.3. Extractions of potentials and systematic errors+, its existence should be carefully examined - New shell closures in future studies. The potential for the spin-singlet sector at NLO can be easily We make a technical comment. We sometimes observe large Tensor force (p-n)! extracted from the equation tcioanl dbitoiuonn dnaurimesb, ewrsh fiocrh Egqi.ve(1s 9r)is(ew ittoh tphorienet ss owuirtche sl)a rngeea rs ttahteis stipcaa-l DVCI=,rS0=i0p(rl)iRn($re,ts;J&o)f,R&n($ri,tt;rJo)gen&and&fluorine&isoerrtoors pat er+s1!–1.5fmin Fig.1. = R($r,!t;J),(Dt−13HN0)R1(5$r,Nt";J) 21N 23N(18) 4.42.7 SNcattering phase shifts and effective potentials TFhorrecee- (n3uNcFle)!on tfaguoinrssroetd iu cJ$tp!wah $le1ae n= s 08f oda&iJ00ecFsfite( ns$r(t )eTho, 1a −fHa t)pn (,lo$ r o!")dticne’oa nn≡mlte ipir#an!" olasptg.ter ∈eoNnOddto iutaFbec"lβy∗s tαt , h1w(ΛVa#gPiStC$rIΩt1 ,R)hh,S H G"e,"w arα"V2enhβ T e4I(2aargn.ave$rM0dne ) αrd, ifaen wDmgVV ehttLh I$i=Scoe1,h v fa 4eormrr1ele lNdo tuihw∂∂ntce22vie nasc−gr ui sawbt∂∂naitec-t, cttchhuaeillscaF utposelorea tnctqeitonunitogat nin oas,tn lci wltayiaste tt tie nvhtroeehin t es pgrtao eu ptfdpoehihnreaeytss is eaoii nclfs av bhtleh uisfoettt bs iagi snlfaesrttrooeev mr asaabcc atltnehtiot aeeant rusosi ,rnb meigtt a eoipinnsfh tediaidones netspeie rorsdaaht beciafltnetbitos oi,tna voslse si,cn. . abcIIlnney- Vunde$r 1th2e 0ro"tation gin the cubi!c group. The result for VCI=,S00(r)is particular, we study whether the LS potential of Fig.1leads to at- EMepacfg.s.VoatlC roIns= ;tF Shtt$$$1bo=ehoerd1rr 111 et t(d ihre864dne) eti000 F dseFstCrJi!ipafmgfni.en(icr1nr-ee)tesnrbd+.ityp f lVsregootrTIm ue=sere1 cntc(eh !"rtscoe),i r Fr,eJc TJqtlehus(ra=,er t)eiwo J+uhnniVc(khALnI S=−1os1hw)(,o nrw)J Ffsu LJ!"(naST c(s1−trtior))o,n!" =nsJ!"g uK rp(JeE =pt−o(!u"r) l(N)s1i(Lo9oOnr)E22 NNx!"p%%mtittdNvnoer33i(agnn urNNacsFs)gWlut!i"t ioesmii#g≡sve-rrif.G e pnu=p c1aealbdilao.1uqf lel3yt(us$cHher sua/nateitflahbvtraoinioe)eitrao , en e l rn x astttopfh whooit(sen eari−c tm tmahtisνcohli csi1emnen,at( n .gthr isttc/ eTrcev bpa ahrt()laiteah rn2trb )ee)agau o r m n+niv≡spndechehg o atoa er#2spprsrrtp(ohee riiNt lba/dn=easgs bi–1atnh≡esu)eottsi 3dsfiasr0ateahb nsl.xfiiiisc 1tfep,tbe5t sxs( y5 pp−p b a5iao(nserν−roteh fa2etml aν(mvhnpvriiet/(eneiiiorabrtsg3/frel ) Pos,b2r it,rn2i) )hazm2tseewcr) f ehdooshSdda hrce nu wwohrrncteweriieheöttaanhhdles--. J(T2−)), dominat1e5dF by 31P70F, 3P1and 3P2–3F22, 3reFspec2ti5vFely, where 29Fsonab#ly. T$he resultant fit parameters and χ2/d.o.f. are given in [A.!FCCJip(or)l≡lonRe($r,,!Ct;BJ,!P),.R!N($ra,tv;rJá;)l,,!Phys.!Rev.!LeQ.!111,!0625Ta0b1Tleh!e(1 2.s0ca1tt3er)i]n!g observables are obtained from the long distance FTJ(r)≡!R($r,t;J),S12R($r,t;J" ), bine hFaigv.io2r. sT ohfe liinnneaerrl ye rirnodre ipse sntdateinstti craelg, uwlahri lseo ltuhtei oonust, earn odn aer eis sshtaotwisn- KFLJJS((rr))≡≡!!RR(($r$r,,tt;;JJ)),,$L(D·t$S−R(H$r,0t);RJ($r)","t,;J). stthiycesat let rmaunandtc iascy teisortnerom ro,af wttiche ect oadkmeerb iiivnnatetoidv aeicn ce oqxuupnaatdn rstaihoteun r uean.n cHde erftrraeoi,nm tto y t ehaserti iscmihnaogti ecfr eto hmoef I(ffneobrr lueFmnieg )c.,Ae 1.−1o), b, WwtT!aee1−i n a,oe lbsTdos2 −e fprrsovlooemtu t rVhcAeaCI−1=;stS 1,=(i ni1T)s (1−ttreh),a e(dE rc −ededno)set,o rsVau lnrTI c=opet1os (ts.re "h)n(oTt(whibael la acV rkesC)Iis=g uSan1lnti1fi d(oc rVab)ntLIaiSt=s i1 ndr(eierfd-)- cfiavousaft stlluiapontechegisaa spbtfeeuhe dnatsw schweteii fioesttnhnsh si fto tth−nfsoe atr a0 tl srt=couhh nea8o ctipa acttoeni−to deon tn7f0 to ifi=afa stltt s7hsi.n, ye Tgas otnd ef edumer nitsavatctaiktmitiecoi vanedetrsie rf e fofexsorrypsres.a nttnAechsmeedios ea npptoi,ofe c wtn ceedeenrne trcntioaarcralless-l pulsive, (ii) the tensor potential VTI=1(r)is positive an;d =weak com- is estimated by changing the fitting function to a Yukawa-type. It pared to VCI=S11(r)and VLIS=1(r), and (iii) the spin–orbit potential turns out that the former dominates the systematic error except ;= Reach of ab-initio theories in recent years ! Degenerate system (open shells, deformations…) ! Hamiltoninan, including three nucleon forces! 88Ni! " 2014" Ab-initio methods zoology QCD! Chiral!EFT! Nuclear!forces:! Phenomenologic! Derive!from! !(QCD!symm)! models! !NN,!3NF,!etc..! L#QCD! (AV18,!CD#Bonn)! 2#,!3#,!N#body! “hard”! “hard”! “sod”! “super!sod”! Hyp!Harm! SRG!evolu;on! Self&Cons.& NCSM! Green’s&fnct& Monte!Carlo! IMSRG! Coupled! GFMC,!AFDMC! L#EFT! cluster! Infinite&maXer&&&& Light&nuclei&& mid&mass&<&132Sn& Astroph.&applica#ons! (cid:1) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) In Green’s Function Monte Carlo one starts with a “trial” wave function, and lets it propagate in time: ! For t"-i∞, this goes to the gs wave function! Better to break the time in many little intervals Δt, Green’s function (GF)(cid:1) Monte Carlo integral (MC)(cid:1) ! GFMC is a method to compute the exact wave function. (typically works for few bodies, A ≤ 12 in nuclei).(cid:1) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) !M BGF is a method that DO NOT compute the wave function: It assumes that the system is in its ground state and attempts at calculating directly simple excitations from it •L arge N (number of particles) •T he N-body ground state plays the role of vacuum (of excitations) •D egrees of freedom are a few particles (or holes) on top of this vacuum •I t is a microscopic method (and capable of “ab-initio” calculations) (cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15) Don’t get confused: Green’s function Monte Carlo (GFMC) and Many-body Green’s Functions are NOT the same method!!!!!!
Description: