Table Of ContentMee#ng&with&HAL&QCD&collabora#on&
RIKEN&–&2>6&February&2015!
Self-consistent Green’s function
applications in ab-initio nuclear physics
Carlo Barbieri — University of Surrey
-1-1V]V] 24O:! dd55//22 ss11//22 pp33//22 pp11//22,, ff77//22 0111...824 01111....8246
MeMe 11..55 pp33//22 pp11//22 dd33//22 00..46 00..46
ωω(n)(n)-3-3S(r,) S(r,) [fm[fm2424OO 00 ..1155--3300 --2255 --2200 --1155 --1100 EE--55FF 00 55 1100 1155 66 44rr [[ffmm]] 22 00 S [MeV] 2n00.234560000 AKCSTciar 00.2
20
10
0
18 20 22 24 26 28 30 32
N
Outline!
!
Day 1 (formalism):!
!- definition of propagator!
!- how we can deal with short range physics!
!- FRPA/ADC(3) self-energy, Gorkov, and 3NFs diagrams!
!
Day 2 (results):!
!- studies of chiral interactions in mid mass nuclei!
!- impact of 3NFs!
!- some words on applications to infinite matter!
Current Status of low-energy nuclear physics
Composite&system&of&interac#ng&fermions& Experimental&
Binding&and&limits&of&stability& programs&
Coexistence&of&individual&and&collec6ve&behaviors&
RIKEN,&FAIR,&FRIB&
Self:organiza6on&and&emerging&phenomena&
EOS&of&neutron&star&ma?er&
r#process!path…!
(
s
n
o
t
o
r
p
Unstable&nuclei&
neutrons(
• ~3,200!known!isotopes!
• !~7,000!predicted!to!exist!
• Correla;on!characterised!
in!full!for!~283!stable(!
Nature!473,!25!!(2011);!486,!509!(2012)!
Current Status of low-energy nuclear physics
Composite&system&of&interac#ng&fermions& Experimental&
Binding&and&limits&of&stability& programs&
Coexistence&of&individual&and&collec6ve&behaviors&
RIKEN,&FAIR,&FRIB&
Self:organiza6on&and&emerging&phenomena&
EOS&of&neutron&star&ma?er&
r#process!path…!
II)&Nuclear&correla#ons&
(
s
n
o Fully&known&for&stable&isotopes&
t
o
r [C.&Barbieri&and&W.&H.&Dickhoff,&Prog.&Part.&Nucl.&Phys&52,&377&(2004)]&
p
&
UnstaNbeluet&rnonu:crilceh&in&uclei;&Shell&evolu6on&(far&from&stability)&
neutrons(
• ~3,200!known!isotopes!
III)&Interdisciplinary&character&
• !~7,000!predicted!to!exist!
I)&Understanding&the&nuclear&force& Astrophysics&
• Correla;on!characterised!
QCD:derived;&3:nucleon&forces&(3NFs)& Tests&of&the&standard&model&
in!full!for!~283!stable(!
First&principle&(ab:ini6o)&predic6ons& Other&fermionic&systems:&
Nature!473,!25!!(2011);!486,!509!(2012)!
&&&ultracold&gasses;&molecules;&
Nuclear forces in exotic nuclei
22 K.Muranoetal./PhysicsLettersB735(2014)19–24
Murano!et!al.!(HAL!QCD!coll.)!
Nucleon interactions are very Phys.!LeQ.!B!(2014)!
complex and difficult to handle
Change of regime from
stable to dripline isotopes !&
Fig.1.Central (S 0and 1), tensor and spin–orbit potentials in parity-odd sector obtained by lattice QCD (left), and their enlargements (right). (For interpretation of the
Neurefetrernceos to ncolo=r- inr thiis cfigurhe leg enmd, the areadtert is ereferrred t(o tNhe w eb(cid:6) version oZf this) ar:tic le.)
Symmetric matter: - Nc2a1n5I 2neb( 3eo) uufiMrt teetsVdim,r wsuohleaoltwli oniwnng,i t htn hsoαe s=tdigiasn0p .8eorr8fs (i1ho )inmg h(χreer2l a/aotdir.odonet.f r. tf=coeor2 n.tt6rrhi)eb uattn i ouEmnclsNe oi=onn SwV LeIS=lFl1 ow(rr i)bthois tt hhn oessgpeai ntoi-vfs eit nhagenl edpt h saetnnrodon mgsep. niTnoh-lteorsgiepic lafeelt a ptcuoetrneetnsr ataila glpr eionet e Rnqeutfia.all[is2t,a 7tt]ih.veerlye
N ≈ Z - Sk2foyr km2≤1.m25 [GeeV2t]r(kay ≤ √e5×n2πe/L) rwigthiny sta tistical errors. mmaeyd iubme ad ivsetrayn cwe e(ark at1trfamct)i.v eH opwocekveetr , ocf olnessisd ethrianng at hfee wst aMtiesVti caatl
4.3. Extractions of potentials and systematic errors+, its existence should be carefully examined
- New shell closures in future studies.
The potential for the spin-singlet sector at NLO can be easily We make a technical comment. We sometimes observe large
Tensor force (p-n)! extracted from the equation tcioanl dbitoiuonn dnaurimesb, ewrsh fiocrh Egqi.ve(1s 9r)is(ew ittoh tphorienet ss owuirtche sl)a rngeea rs ttahteis stipcaa-l
DVCI=,rS0=i0p(rl)iRn($re,ts;J&o)f,R&n($ri,tt;rJo)gen&and&fluorine&isoerrtoors pat er+s1!–1.5fmin Fig.1.
= R($r,!t;J),(Dt−13HN0)R1(5$r,Nt";J) 21N 23N(18) 4.42.7 SNcattering phase shifts and effective potentials
TFhorrecee- (n3uNcFle)!on tfaguoinrssroetd iu cJ$tp!wah $le1ae n= s 08f oda&iJ00ecFsfite( ns$r(t )eTho, 1a −fHa t)pn (,lo$ r o!")dticne’oa nn≡mlte ipir#an!" olasptg.ter ∈eoNnOddto iutaFbec"lβy∗s tαt , h1w(ΛVa#gPiStC$rIΩt1 ,R)hh,S H G"e,"w arα"V2enhβ T e4I(2aargn.ave$rM0dne ) αrd, ifaen wDmgVV ehttLh I$i=Scoe1,h v fa 4eormrr1ele lNdo tuihw∂∂ntce22vie nasc−gr ui sawbt∂∂naitec-t, cttchhuaeillscaF utposelorea tnctqeitonunitogat nin oas,tn lci wltayiaste tt tie nvhtroeehin t es pgrtao eu ptfdpoehihnreaeytss is eaoii nclfs av bhtleh uisfoettt bs iagi snlfaesrttrooeev mr asaabcc atltnehtiot aeeant rusosi ,rnb meigtt a eoipinnsfh tediaidones netspeie rorsdaaht beciafltnetbitos oi,tna voslse si,cn. . abcIIlnney-
Vunde$r 1th2e 0ro"tation gin the cubi!c group. The result for VCI=,S00(r)is particular, we study whether the LS potential of Fig.1leads to at-
EMepacfg.s.VoatlC roIns= ;tF Shtt$$$1bo=ehoerd1rr 111 et t(d ihre864dne) eti000 F dseFstCrJi!ipafmgfni.en(icr1nr-ee)tesnrbd+.ityp f lVsregootrTIm ue=sere1 cntc(eh !"rtscoe),i r Fr,eJc TJqtlehus(ra=,er t)eiwo J+uhnniVc(khALnI S=−1os1hw)(,o nrw)J Ffsu LJ!"(naST c(s1−trtior))o,n!" =nsJ!"g uK rp(JeE =pt−o(!u"r) l(N)s1i(Lo9oOnr)E22 NNx!"p%%mtittdNvnoer33i(agnn urNNacsFs)gWlut!i"t ioesmii#g≡sve-rrif.G e pnu=p c1aealbdilao.1uqf lel3yt(us$cHher sua/nateitflahbvtraoinioe)eitrao , en e l rn x astttopfh whooit(sen eari−c tm tmahtisνcohli csi1emnen,at( n .gthr isttc/ eTrcev bpa ahrt()laiteah rn2trb )ee)agau o r m n+niv≡spndechehg o atoa er#2spprsrrtp(ohee riiNt lba/dn=easgs bi–1atnh≡esu)eottsi 3dsfiasr0ateahb nsl.xfiiiisc 1tfep,tbe5t sxs( y5 pp−p b a5iao(nserν−roteh fa2etml aν(mvhnpvriiet/(eneiiiorabrtsg3/frel ) Pos,b2r it,rn2i) )hazm2tseewcr) f ehdooshSdda hrce nu wwohrrncteweriieheöttaanhhdles--.
J(T2−)), dominat1e5dF by 31P70F, 3P1and 3P2–3F22, 3reFspec2ti5vFely, where 29Fsonab#ly. T$he resultant fit parameters and χ2/d.o.f. are given in
[A.!FCCJip(or)l≡lonRe($r,,!Ct;BJ,!P),.R!N($ra,tv;rJá;)l,,!Phys.!Rev.!LeQ.!111,!0625Ta0b1Tleh!e(1 2.s0ca1tt3er)i]n!g observables are obtained from the long distance
FTJ(r)≡!R($r,t;J),S12R($r,t;J" ), bine hFaigv.io2r. sT ohfe liinnneaerrl ye rirnodre ipse sntdateinstti craelg, uwlahri lseo ltuhtei oonust, earn odn aer eis sshtaotwisn-
KFLJJS((rr))≡≡!!RR(($r$r,,tt;;JJ)),,$L(D·t$S−R(H$r,0t);RJ($r)","t,;J). stthiycesat let rmaunandtc iascy teisortnerom ro,af wttiche ect oadkmeerb iiivnnatetoidv aeicn ce oqxuupnaatdn rstaihoteun r uean.n cHde erftrraeoi,nm tto y t ehaserti iscmihnaogti ecfr eto hmoef
I(ffneobrr lueFmnieg )c.,Ae 1.−1o), b, WwtT!aee1−i n a,oe lbsTdos2 −e fprrsovlooemtu t rVhcAeaCI−1=;stS 1,=(i ni1T)s (1−ttreh),a e(dE rc −ededno)set,o rsVau lnrTI c=opet1os (ts.re "h)n(oTt(whibael la acV rkesC)Iis=g uSan1lnti1fi d(oc rVab)ntLIaiSt=s i1 ndr(eierfd-)- cfiavousaft stlluiapontechegisaa spbtfeeuhe dnatsw schweteii fioesttnhnsh si fto tth−nfsoe atr a0 tl srt=couhh nea8o ctipa acttoeni−to deon tn7f0 to ifi=afa stltt s7hsi.n, ye Tgas otnd ef edumer nitsavatctaiktmitiecoi vanedetrsie rf e fofexsorrypsres.a nttnAechsmeedios ea npptoi,ofe c wtn ceedeenrne trcntioaarcralless-l
pulsive, (ii) the tensor potential VTI=1(r)is positive an;d =weak com- is estimated by changing the fitting function to a Yukawa-type. It
pared to VCI=S11(r)and VLIS=1(r), and (iii) the spin–orbit potential turns out that the former dominates the systematic error except
;=
Reach of ab-initio theories in
recent years
! Degenerate system (open shells, deformations…)
! Hamiltoninan, including three nucleon forces!
88Ni!
"
2014"
Ab-initio methods zoology
QCD!
Chiral!EFT!
Nuclear!forces:! Phenomenologic!
Derive!from!
!(QCD!symm)!
models!
!NN,!3NF,!etc..!
L#QCD!
(AV18,!CD#Bonn)! 2#,!3#,!N#body!
“hard”! “hard”! “sod”!
“super!sod”!
Hyp!Harm!
SRG!evolu;on!
Self&Cons.&
NCSM! Green’s&fnct&
Monte!Carlo!
IMSRG!
Coupled!
GFMC,!AFDMC!
L#EFT! cluster!
Infinite&maXer&&&&
Light&nuclei&& mid&mass&<&132Sn&
Astroph.&applica#ons!
(cid:1)
(cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15)
In Green’s Function Monte Carlo one starts with a “trial” wave function, and
lets it propagate in time:
! For t"-i∞, this goes to
the gs wave function!
Better to break the time in many little intervals Δt,
Green’s function (GF)(cid:1)
Monte Carlo
integral (MC)(cid:1)
! GFMC is a method to compute the exact wave function.
(typically works for few bodies, A ≤ 12 in nuclei).(cid:1)
(cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15)
!M BGF is a method that DO NOT compute the wave function:
It assumes that the system is in its ground state and attempts at
calculating directly simple excitations from it
•L arge N (number of particles)
•T he N-body ground state plays the role of vacuum (of excitations)
•D egrees of freedom are a few particles (or holes) on top of this vacuum
•I t is a microscopic method (and capable of “ab-initio” calculations)
(cid:20)(cid:19)(cid:21)(cid:18)(cid:1)(cid:48)(cid:43)(cid:21)(cid:17)(cid:20)(cid:19)(cid:1)(cid:49)(cid:52)(cid:44)(cid:1)(cid:50)(cid:1)(cid:51)(cid:1)(cid:47)(cid:46)(cid:45)(cid:15)(cid:15)
Don’t get confused:
Green’s function Monte Carlo (GFMC) and
Many-body Green’s Functions
are NOT the same method!!!!!!
Description:In Green's Function Monte Carlo one starts with a “trial” wave function, and The one body propagator (≡Green's function) .. C70, 014606 (2004).