ebook img

Lectures in Logic and Set Theory. Volume 1: Mathematical Logic PDF

342 Pages·2003·1.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lectures in Logic and Set Theory. Volume 1: Mathematical Logic

This page intentionally left blank CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EDITORIAL BOARD B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK LecturesinLogicandSetTheoryVolume1 Thistwo-volumeworkbridgesthegapbetweenintroductoryexpositionsof logicorsettheoryononehand,andtheresearchliteratureontheother.Itcan beusedasatextinanadvancedundergraduateorbeginninggraduatecourse inmathematics,computerscience,orphilosophy.Thevolumesarewrittenin auser-friendlyconversationallecturestylethatmakesthemequallyeffective forself-studyorclassuse. Volume1includesformalprooftechniques,asectiononapplicationsof compactness(includingnon-standardanalysis),agenerousdoseofcomputa- bilityanditsrelationtotheincompletenessphenomenon,andthefirstpresen- tationofacompleteproofofGo¨del’ssecondincompletenesstheoremsince HilbertandBernay’sGrundlagen. Alreadypublished 2 K.PetersenErgodictheory 3 P.T.JohnstoneStonespaces 5 J.-P.KahaneSomerandomseriesoffunctions,2ndedition 7 J.Lambek&P.J.ScottIntroductiontohigher-ordercategoricallogic 8 H.MatsumuraCommutativeringtheory 10 M.AschbacherFinitegrouptheory,2ndedition 11 J.L.AlperinLocalrepresentationtheory 12 P.KoosisThelogarithmicintegralI 14 S.J.PattersonAnintroductiontothetheoryoftheRiemannzeta-function 15 H.J.BauesAlgebraichomotopy 16 V.S.VaradarajanIntroductiontoharmonicanalysisonsemisimpleLiegroups 17 W.Dicks&M.DunwoodyGroupsactingongraphs 19 R.Fritsch&R.PiccininiCellularstructuresintopology 20 H.KlingenIntroductorylecturesonSiegelmodularforms 21 P.KoosisThelogarithmicintegralII 22 M.J.CollinsRepresentationsandcharactersoffinitegroups 24 H.KunitaStochasticflowsandstochasticdifferentialequations 25 P.WojtaszczykBanachspacesforanalysts 26 J.E.Gilbert&M.A.M.MurrayCliffordalgebrasandDiracoperatorsinharmonicanalysis 27 A.Frohlich&M.J.TaylorAlgebraicnumbertheory 28 K.Goebel&W.A.KirkTopicsinmetricfixedpointtheory 29 J.F.HumphreysReflectiongroupsandCoxetergroups 30 D.J.BensonRepresentationsandcohomologyI 31 D.J.BensonRepresentationsandcohomologyII 32 C.Allday&V.PuppeCohomologicalmethodsintransformationgroups 33 C.Souleetal.LecturesonArakelovgeometry 34 A.Ambrosetti&G.ProdiAprimerofnonlinearanalysis 35 J.Palis&F.TakensHyperbolicity,stabilityandchaosathomoclinicbifurcations 37 Y.MeyerWaveletsandoperators1 38 C.Weibel,Anintroductiontohomologicalalgebra 39 W.Bruns&J.HerzogCohen-Macaulayrings 40 V.SnaithExplicitBrauerinduction 41 G.LaumonCohomologyofDrinfeldmodularvarietiesI 42 E.B.DaviesSpectraltheoryanddifferentialoperators 43 J.Diestel,H.Jarchow,&A.TongeAbsolutelysummingoperators 44 P.MattilaGeometryofsetsandmeasuresinEuclideanspaces 45 R.PinskyPositiveharmonicfunctionsanddiffusion 46 G.TenenbaumIntroductiontoanalyticandprobabilisticnumbertheory 47 C.PeskineAnalgebraicintroductiontocomplexprojectivegeometry 48 Y.Meyer&R.CoifmanWavelets 49 R.StanleyEnumerativecombinatoricsI 50 I.PorteousCliffordalgebrasandtheclassicalgroups 51 M.AudinSpinningtops 52 V.JurdjevicGeometriccontroltheory 53 H.VolkleinGroupsasGaloisgroups 54 J.LePotierLecturesonvectorbundles 55 D.BumpAutomorphicformsandrepresentations 56 G.LaumonCohomologyofDrinfeldmodularvarietiesII 57 D.M.Clark&B.A.DaveyNaturaldualitiesfortheworkingalgebraist 58 J.McClearyAuser’sguidetospectralsequencesII 59 P.TaylorPracticalfoundationsofmathematics 60 M.P.Brodmann&R.Y.SharpLocalcohomology 61 J.D.Dixonetal.Analyticpro-Pgroups 62 R.StanleyEnumerativecombinatoricsII 63 R.M.DudleyUniformcentrallimittheorems 64 J.Jost&X.Li-JostCalculusofvariations 65 A.J.Berrick&M.E.KeatingAnintroductiontoringsandmodules 66 S.MorosawaHolomorphicdynamics 67 A.J.Berrick&M.E.KeatingCategoriesandmoduleswithK-theoryinview 68 K.SatoLevyprocessesandinfinitelydivisibledistributions 69 H.HidaModularformsandGaloiscohomology 70 R.Iorio&V.IorioFourieranalysisandpartialdifferentialequations 71 R.BleiAnalysisinintegerandfractionaldimensions 72 F.Borceaux&G.JanelidzeGaloistheories 73 B.BollobasRandomgraphs LECTURES IN LOGIC AND SET THEORY Volume1:MathematicalLogic GEORGE TOURLAKIS YorkUniversity    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , United Kingdom Published in the United States by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521753739 © George Tourlakis 2003 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2003 ISBN-13 978-0-511-06871-3 eBook (EBL) ISBN-10 0-511-06871-9 eBook (EBL) ISBN-13 978-0-521-75373-9 hardback ISBN-10 0-521-75373-2 hardback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. γιατην δεσπoινα,την µαρινακαιτoν γιαννη Contents Preface pageix I BasicLogic 1 I.1 FirstOrderLanguages 5 I.2 ADigressionintotheMetatheory: InformalInductionandRecursion 19 I.3 AxiomsandRulesofInference 28 I.4 BasicMetatheorems 42 I.5 Semantics;Soundness,Completeness,Compactness 52 I.6 Substructures,Diagrams,andApplications 75 I.7 DefinedSymbols 112 I.8 ComputabilityandUncomputability 123 I.9 Arithmetic,Definability,Undefinability, andIncompletableness 155 I.10 Exercises 191 II TheSecondIncompletenessTheorem 205 II.1 PeanoArithmetic 206 II.2 AFormalβ-Function 232 II.3 FormalPrimitiveRecursion 248 II.4 TheBoldface(cid:14)and(cid:15) 256 II.5 Arithmetization 265 II.6 DerivabilityConditions;FixedPoints 272 II.7 Exercises 316 Bibliography 319 ListofSymbols 321 Index 323 vii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.