ebook img

Lecture notes on probability and random processes university of california PDF

302 Pages·2004·1.592 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture notes on probability and random processes university of california

Lecture Notes on Probability Theory and Random Processes Jean Walrand Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 August 25, 2004 2 Table of Contents Table of Contents 3 Abstract 9 Introduction 1 1 Modelling Uncertainty 3 1.1 Models and Physical Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Concepts and Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Function of Hidden Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 A Look Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Probability Space 13 2.1 Choosing At Random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Countable Additivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Choosing uniformly in {1,2,...,N} . . . . . . . . . . . . . . . . . . 17 2.5.2 Choosing uniformly in [0,1] . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 Choosing uniformly in [0,1]2 . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.1 Stars and Bars Method . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Conditional Probability and Independence 27 3.1 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 4 CONTENTS 3.4.1 Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.2 Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.4 General Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Random Variable 37 4.1 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Examples of Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Generating Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.6 Function of Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.7 Moments of Random Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.8 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.10 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Random Variables 67 5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Joint Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Conditional Expectation 85 6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.1 Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.1.2 Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1.3 Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3 Two Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.4 Properties of Conditional Expectation . . . . . . . . . . . . . . . . . . . . . 90 6.5 Gambling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7 Gaussian Random Variables 101 7.1 Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.1 N(0,1): Standard Gaussian Random Variable . . . . . . . . . . . . . 101 7.1.2 N(µ,σ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 CONTENTS 5 7.2 Jointly Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.1 N(000,III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2 Jointly Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.3 Conditional Expectation J.G. . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Detection and Hypothesis Testing 121 8.1 Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.2 Maximum Likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . 122 8.3 Hypothesis Testing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.3.1 Simple Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.3.3 Proof of the Neyman-Pearson Theorem . . . . . . . . . . . . . . . . 126 8.4 Composite Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.4.1 Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.4.2 Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 8.4.3 Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.5.1 MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.5.2 MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.5.3 Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 9 Estimation 143 9.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.2 Linear Least Squares Estimator: LLSE . . . . . . . . . . . . . . . . . . . . . 143 9.3 Recursive LLSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.4 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.5.1 LSSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 10 Limits of Random Variables 163 10.1 Convergence in Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.2 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10.3 Almost Sure Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 10.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.4 Convergence In Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 10.5 Convergence in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 10.6 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6 CONTENTS 10.7 Convergence of Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11 Law of Large Numbers & Central Limit Theorem 175 11.1 Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.2 Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.3 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.4 Approximate Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 178 11.5 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12 Random Processes Bernoulli - Poisson 189 12.1 Bernoulli Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.1.1 Time until next 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 12.1.2 Time since previous 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 191 12.1.3 Intervals between 1s . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 12.1.4 Saint Petersburg Paradox . . . . . . . . . . . . . . . . . . . . . . . . 191 12.1.5 Memoryless Property . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.1.6 Running Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.1.7 Gamblers Ruin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.1.8 Reflected Running Sum . . . . . . . . . . . . . . . . . . . . . . . . . 194 12.1.9 Scaling: SLLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 12.1.10Scaling: Brownian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 12.2 Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 12.2.1 Memoryless Property . . . . . . . . . . . . . . . . . . . . . . . . . . 200 12.2.2 Number of jumps in [0,t] . . . . . . . . . . . . . . . . . . . . . . . . 200 12.2.3 Scaling: SLLN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 12.2.4 Scaling: Bernoulli → Poisson . . . . . . . . . . . . . . . . . . . . . . 201 12.2.5 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 12.2.6 Saint Petersburg Paradox . . . . . . . . . . . . . . . . . . . . . . . . 202 12.2.7 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.2.8 Time reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.2.9 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.2.10Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 12.2.11Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 13 Filtering Noise 211 13.1 Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 13.1.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.2 Wide Sense Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . 217 CONTENTS 7 13.3 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 13.4 LTI Systems and Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 13.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14 Markov Chains - Discrete Time 225 14.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 14.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 14.4 Invariant Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 14.5 First Passage Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 14.6 Time Reversal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 15 Markov Chains - Continuous Time 245 15.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.2 Construction (regular case) . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 15.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.4 Invariant Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 15.5 Time-Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 15.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 16 Applications 255 16.1 Optical Communication Link . . . . . . . . . . . . . . . . . . . . . . . . . . 255 16.2 Digital Wireless Communication Link . . . . . . . . . . . . . . . . . . . . . 258 16.3 M/M/1 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 16.4 Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 16.5 A Simple Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 16.6 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 A Mathematics Review 265 A.1 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.1.1 Real, Complex, etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.1.2 Min, Max, Inf, Sup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 A.2 Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 A.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.3.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.3.2 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.3.3 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 A.4 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 A.5 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8 CONTENTS A.6 Countability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A.7 Basic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 A.7.1 Proof by Contradiction . . . . . . . . . . . . . . . . . . . . . . . . . 270 A.7.2 Proof by Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 A.8 Sample Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 B Functions 275 C Nonmeasurable Set 277 C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 C.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 C.3 Constructing S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 D Key Results 279 E Bertrand’s Paradox 281 F Simpson’s Paradox 283 G Familiar Distributions 285 G.1 Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 G.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Bibliography 293 Abstract These notes are derived from lectures and office-hour conversations in a junior/senior-level course on probability and random processes in the Department of Electrical Engineering and Computer Sciences at the University of California, Berkeley. Thenotesdonotreplaceatextbook. Rather, theyprovideaguidethroughthematerial. The style is casual, with no attempt at mathematical rigor. The goal to to help the student figure out the meaning of various concepts and to illustrate them with examples. When choosing a textbook for this course, we always face a dilemma. On the one hand, there are many excellent books on probability theory and random processes. However, we find that these texts are too demanding for the level of the course. On the other hand, books written for the engineering students tend to be fuzzy in their attempt to avoid subtle mathematical concepts. As a result, we always end up having to complement the textbook we select. If we select a math book, we need to help the student understand the meaning of the results and to provide many illustrations. If we select a book for engineers, we need to provide a more complete conceptual picture. These notes grew out of these efforts at filling the gaps. You will notice that we are not trying to be comprehensive. All the details are available in textbooks. There is no need to repeat the obvious. The author wants to thank the many inquisitive students he has had in that class and the very good teaching assistants, in particular Teresa Tung, Mubaraq Misra, and Eric Chi, who helped him over the years; they contributed many of the problems. Happy reading and keep testing hypotheses! Berkeley, June 2004 - Jean Walrand 9 Introduction Engineeringsystemsaredesignedtooperatewellinthefaceofuncertaintyofcharacteristics of components and operating conditions. In some case, uncertainty is introduced in the operations of the system, on purpose. Understanding how to model uncertainty and how to analyze its effects is – or should be – an essential part of an engineer’s education. Randomness is a key element of all systems we design. Communication systems are designed to compensate for noise. Internet routers are built to absorb traffic fluctuations. Building must resist the unpredictable vibrations of an earthquake. The power distribution grid carries an unpredictable load. Integrated circuit manufacturing steps are subject to unpredictable variations. Searching for genes is looking for patterns among unknown strings. What should you understand about probability? It is a complex subject that has been constructed over decades by pure and applied mathematicians. Thousands of books explore various aspects of the theory. How much do you really need to know and where do you start? Thefirstkeyconceptishowtomodeluncertainty(seeChapter2-3). Whatdowemean by a “random experiment?” Once you understand that concept, the notion of a random variableshouldbecometransparent(seeChapters4-5). Youmaybesurprisedtolearnthat a random variable does not vary! Terms may be confusing. Once you appreciate the notion of randomness, you should get some understanding for the idea of expectation (Section 4.5) andhowobservationsmodifyit(Chapter6). Aspecialclassofrandomvariables(Gaussian) 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.