ebook img

Lecture Notes on Newtonian Mechanics: Lessons from Modern Concepts PDF

255 Pages·2013·2.631 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture Notes on Newtonian Mechanics: Lessons from Modern Concepts

Undergraduate Lecture Notes in Physics Ilya L. Shapiro Guilherme de Berredo-Peixoto Lecture Notes on Newtonian Mechanics Lessons from Modern Concepts Undergraduate Lecture Notes in Physics Forfurthervolumes: http://www.springer.com/series/8917 UndergraduateLectureNotesinPhysics(ULNP)publishesauthoritativetextscov- ering topics throughout pure and applied physics. Each title in the series is suit- ableasabasisforundergraduateinstruction,typicallycontainingpracticeproblems, workedexamples,chaptersummaries,andsuggestionsforfurtherreading. ULNPtitlesmustprovideatleastoneofthefollowing: • An exceptionally clear and concise treatment of a standard undergraduate subject. • Asolidundergraduate-levelintroductiontoagraduate,advanced,ornonstandard subject. • Anovelperspectiveoranunusualapproachtoteachingasubject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysics teachingattheundergraduatelevel. ThepurposeofULNPisto provideintriguing,absorbingbooksthatwillcontinue tobethereaderspreferredreferencethroughouttheiracademiccareer. Series Editors NeilAshby Professor,ProfessorEmeritus,UniversityofColoradoBoulder,CO,USA WilliamBrantley Professor,FurmanUniversity,Greenville,SC,USA MichaelFowler Professor,UniversityofVirginia,Charlottesville,VA,USA MichaelInglis Professor,SUNYSuffolkCountyCommunityCollege,Selden,NY,USA ElenaSassi Professor,UniversityofNaplesFedericoII,Naples,Italy HelmySherif ProfessorEmeritus,UniversityofAlberta,Edmonton,AB,Canada Ilya L. Shapiro • Guilherme de Berredo-Peixoto Lecture Notes on Newtonian Mechanics Lessons from Modern Concepts 123 IlyaL.Shapiro GuilhermedeBerredo-Peixoto DepartamentodeFisica–ICE DepartamentodeFisica–ICE UniversidadeFederaldeJuizdeFora UniversidadeFederaldeJuizdeFora JuizdeFora,Brazil JuizdeFora,Brazil TomskStatePedagogicalUniversity Tomsk,Russia ISSN2192-4791 ISSN2192-4805(electronic) ISBN978-1-4614-7824-9 ISBN978-1-4614-7825-6(eBook) DOI10.1007/978-1-4614-7825-6 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013940515 ©SpringerScience+BusinessMedia,LLC2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface ClassicalMechanicsisafirststepforthosewhobegintostudyTheoreticalPhysics. One can say thatin this case, as in manyother situationsof life, the first step can be the most importantone. In fact, the same subjects which are dealt with first in Mechanicsaresometimesapproachedafterwardsinmoreadvancedcoursessuchas Electrodynamics, Quantum Mechanics and Statistical Mechanics. Of course, the same concepts appear to be more sophisticated and sometimes more interesting when formulated in these frameworks. At the same time these formulations may also be more difficult. For this reason, the student who knowswell Classical Me- chanicscanstudyotherpartsofTheoreticalPhysicseasierandperhapsbetter. The course of Classical Mechanicsfor Physicsstudentsis traditionallydivided intwoparts.Thefirstoneistechnicallysimplerthanthesecondone,whichisalso called Analytical Mechanics. In the secondpart, the mathematicaland theoretical toolsare more complicatedand this allows us to consider the notionsof Mechan- ics in a more general and profound way. At the same time, for many students, it is importantto start the studyof AnalyticalMechanicswith an appropriateprepa- ration,and for this reasonthe one-semesterintroductoryphysicscourseis usually notenough.Toaddressthissituation,thereisusuallyacourseofClassicalMechan- ics, which is somehow intermediate between introductory Physics and Analytical Mechanics.Suchanintermediatecourseisthesubjectofthepresentbook.Anim- portantdifferencebetweensuch an introductorycourse and AnalyticalMechanics isthatthefirstoneassumesarestricteduseofmathematicalmethodsand,therefore, leavesmoreroomforphysicsintuition. Classical Mechanicsis knownforcenturies,butherewe haveintroducedsome relatively modernconcepts,e.g., Einstein’s equivalenceprinciple. It turnsout that theyareusefulalsoattheintroductoryleveland,actually,helptosolvesomeprob- lemsinamoresimpleway. Webelievethatthetextbooksdirectedtostudentsshouldhavethefollowingim- portantfeature:theyhaveto take into accountthe realitiesof academiclife, when studentshavemanydisciplinestostudyinashortperiodoftime.Sothetextbooks should be sufficiently short. In this book, we tried to be brief. The book is tech- nicalandaimedatclarifyingthekeynotionsandshowhowtosolveproblemsofa v vi Preface standardlevelofdifficulty,andsometimesabitmoredifficultones.Finally,wehope thisbookwillbeusefulforthereadersandwisheveryoneagoodstudyofClassical Mechanics. ThefirstversionofthisbookwaspublishedinPortugueseby“LivrariadaF´ısica” (USP,Sa˜oPaulo)withageneroussupportfromtheresearchsector(PROPESQ)of FederalUniversityofJuizdeFora,thesameistrueforthefirstversionoftransla- tion of the manuscript into English. We would like to acknowledge the efforts of RafaelGonc¸alves,intypingthefirstversioninPortugueseandalsoTiagoMendes RodriguesandCaiqueAffonsoGarciaforcontributingtothetranslationtoEnglish, respectively.Wewouldliketothankallthosecolleaguesandstudentswhoindicated to usmisprintsandshortcomingsinthe draftsandin the finalPortugueseversion, andespeciallyDra.ElenaKonstantinovawhomadeaveryimportantcontributionin improvingandcleaningupthelastversion,whichwastranslatedtoEnglish.Finally, weacknowledgethecontributionofProf.NeilAshbywhoprofessionallyreviewed thebookforSpringer/NYandhelpedustoimproveEnglishandpresentation. Finally,wewish tothankCNPq,FAPEMIGand(I.Sh.)ICTPforthelong-term supportofourwork. JuizdeFora,Brazil IlyaL.Shapiro G.deBerredo-Peixoto Contents 1 Introduction................................................... 1 2 Kinematics .................................................... 5 2.1 KinematicsofaParticle ..................................... 5 2.2 MotionofaParticleintheCo-movingBasis .................... 11 2.3 PolarCoordinatesinthePlane,CylindricalandSpherical intheSpace ............................................... 18 2.4 KinematicsofaRigidBody.................................. 27 2.5 TransformationBetweenReferenceSystems.................... 32 3 Newton’sLaws................................................. 39 3.1 IntroductoryRemarks....................................... 39 3.2 InertialFrameofReference:Newton’sFirstLaw ................ 40 3.3 Newton’sSecondLaw ...................................... 41 3.4 BriefClassificationofForcesinMechanics..................... 43 3.5 ApplicationsofNewton’sSecondLaw......................... 49 3.6 Newton’sThirdLaw ........................................ 57 3.7 Non-inertialReferenceFramesandInertiaForces ............... 62 3.7.1 AcceleratedTranslationalMotion....................... 63 3.7.2 UniformRotationalMotion............................ 67 Appendix...................................................... 73 4 ConservationofMomentum..................................... 81 4.1 LinearMomentum.......................................... 81 4.2 TheProblemofTwoBodies.................................. 91 5 WorkofaForceandConservativeForces......................... 97 5.1 WorkofaForce............................................ 97 5.2 ConservativeForces ........................................101 5.2.1 PotentialForce ......................................102 5.2.2 SolenoidalForce.....................................104 vii viii Contents 5.3 DissipativeForces..........................................104 Appendix......................................................107 6 ConservationofEnergy.........................................111 6.1 ParticleinaPotentialForceField .............................111 6.2 ConservationofEnergyinClosedSystems .....................115 6.3 KineticEnergyinDifferentReferenceFrames ..................118 6.4 ApplicationsofEnergyConservation ..........................120 6.5 ElasticCollisionsBetweenTwoParticles.......................126 7 MovementinaPotentialField:Oscillations .......................133 7.1 IntroductoryRemarks.......................................133 7.2 UnidimensionalMovementinaFixedPotential .................134 7.3 HarmonicOscillator ........................................137 7.4 DampedOscillations........................................150 7.5 ForcedOscillations .........................................153 7.6 MultidimensionalOscillators.................................157 8 DynamicsofRotationalMovements .............................163 8.1 TorqueandMomentofInertia................................163 8.2 AngularMomentumofaSystemofParticles....................179 8.3 ConservationofAngularMomentum ..........................183 9 CentralForcesandKepler’sLaws ...............................191 9.1 Kepler’sLaws .............................................191 9.2 PrecessionofPerihelionforaNearlyCircularOrbit..............203 10 BasicNotionsofHydrodynamics.................................209 10.1 Introduction ...............................................209 10.2 Pascal’sLaw ..............................................210 10.3 ContinuityEquation ........................................213 10.4 Euler’sEquation ...........................................215 10.5 Bernoulli’sEquation........................................218 10.6 SoundWaveEquation.......................................220 FundamentalsofVectorAnalysis.....................................227 A.1 VectorAlgebra.............................................227 A.2 ScalarandVectorFields.....................................230 A.3 DifferentialCalculus........................................233 A.4 ElementsofIntegralCalculusforVectors ......................236 A.4.1 CurvilinearIntegraloftheFirstKind....................236 A.4.2 CurvilinearIntegralofSecondKind ....................238 A.5 SurfaceandVolumeIntegralsin 3D Space .....................240 References.........................................................247 Index .............................................................249 Notations 1. Thenotationforsumis N ∑x = x +x +...+x . i 1 2 N i=1 2. Thevectorsarewrittenintwodifferentways.IncaseofLatinletters,the“bold” −→ −→ styleisused,e.g.,r,vandF. ForGreeklettersweusearrows,e.g., ωor α. 3. Thescalarandvectorproductoftwovectors, a and b, arewrittenas (a,b) = a·b and [a,b] = a×b correspondingly.Bothtypesofnotationsare commonin theliterature,so our goalistogivethestudentsachancetogetusedtothesenotations. 4. Themodulus(magnitudeorlength)ofavector a iswrittenasfollows: (cid:2) √ a = |a| = a·a = a2+a2+a2, 1 2 3 where a ,a ,a are the components of the vector a in some orthonormal 1 2 3 basis,forexample,inCartesiancoordinates.Thesamenotationisusedforthe radius-vector(orpositionvector)ofapointparticle, (cid:3) r = xˆi+yˆj+zkˆ, that is, r = |r| = x2+y2+z2. 5. Theunitvectorinthedirectionof a isdenotedas aˆ; thismeansthat aˆ=a/a. Cartesianreferenceframe(systemofcoordinates)consistsof theinitialpoint (ororigin)O,andthethreeorthonormalvectors ˆi, ˆj, kˆ whichformthebasis. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.