ebook img

Lecture is here in PDF PDF

44 Pages·2017·5.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture is here in PDF

DISCRETE MINIMAL ENERGY PROBLEMS LectureII E.B.Saff CenterforConstructiveApproximation VanderbiltUniversity UniversityofCrete,HeraklionMay,2017 FundamentalThm: lim (A,N)/N2 =W (A).Everyweak∗ N→∞ K K E limitmeasureofthesequence ν(ω∗) ∞ forN-pointK-energy { N }N=2 minimizingconfigurationsω∗ isanequilibriummeasureforthe N continuousproblemonA. Recall Notation ω = x ,...,x A, Acompact,infinite N 1 N { }⊂ K :A A R + , symmetricandl.s.c. × → ∪{ ∞} E (ω )= K(x,x) K N i j i(cid:54)=j (cid:88) (A,N)=min E (ω ): ω A, #ω =N K K N N N E { ⊂ } W (A):= min I [A]= min K(x,y)dµ(x)dµ(y) K K µ∈M(A) µ∈M(A) (cid:90)(cid:90) A×A µ equilibriummeasure,I [µ ]=W (A) A K A K ν(ω )= 1 δ , normalizedcountingmeasure N N x∈ωN x (cid:80) Recall Notation ω = x ,...,x A, Acompact,infinite N 1 N { }⊂ K :A A R + , symmetricandl.s.c. × → ∪{ ∞} E (ω )= K(x,x) K N i j i(cid:54)=j (cid:88) (A,N)=min E (ω ): ω A, #ω =N K K N N N E { ⊂ } W (A):= min I [A]= min K(x,y)dµ(x)dµ(y) K K µ∈M(A) µ∈M(A) (cid:90)(cid:90) A×A µ equilibriummeasure,I [µ ]=W (A) A K A K ν(ω )= 1 δ , normalizedcountingmeasure N N x∈ωN x Fundamen(cid:80)talThm: lim (A,N)/N2 =W (A).Everyweak∗ N→∞ K K E limitmeasureofthesequence ν(ω∗) ∞ forN-pointK-energy { N }N=2 minimizingconfigurationsω∗ isanequilibriummeasureforthe N continuousproblemonA. Riesz s-Energy in Euclidean Space HereafterA Rp and = x y , Euclideandistance. ⊂ ||·|| | − | TheRieszs-kernelisdefinedby 1 1 K (x,y):= , s >0; K (x,y):=log , x,y A. s x y s log x y ∈ | − | | − | Wewrite E (ω):=E (ω), (A,N)= (A,N), s >0 or s =log. s Ks Es EKs Forp =3,s =1,getCoulombkernel. ForA Rp ands =p 2,wegetNewtonkernel. ⊂ − Some Basic Properties of Riesz Energy • A B (A,N) (B,N) s s ⊂ ⇒ E ≥E • (A+x,N)= (A,N) s s E E • (αA,N)= α−s (A,N) s s E | | E • (A,N)iscontinuousins fors >0 s E • (A,N) N(N 1) lim Es − − = (A,N) s→0+ s Elog andforfixedN,everyclusterpointofminimals-energyN-point configurationsω(s) ass 0+ isanN-pointminimallogenergy N → configuration. Proposition(Proveit) ForeachfixedN 2, ≥ 1 lim (A,N)1/s = . s→∞Es δN(A) Moreover,everyclusterconfigurationass ofs-energy →∞ minimizingN-pointconfigurationsonAisanN-pointbest-packing configurationonA. Best-Packing and Riesz Energy (s ) → ∞ Recall: Separationdistanceofω = x ,...,x A N 1 N { }⊂ δ(ω ):= min x x . N i j 1≤i(cid:54)=j≤N| − | N-pointbest-packingdistanceonA, δ (A):=sup δ(ω ):ω A, #ω =N , N N N N { ⊂ } ω∗ isbest-packingconfigurationifδ(ω∗)=δ (A). N N N Best-Packing and Riesz Energy (s ) → ∞ Recall: Separationdistanceofω = x ,...,x A N 1 N { }⊂ δ(ω ):= min x x . N i j 1≤i(cid:54)=j≤N| − | N-pointbest-packingdistanceonA, δ (A):=sup δ(ω ):ω A, #ω =N , N N N N { ⊂ } ω∗ isbest-packingconfigurationifδ(ω∗)=δ (A). N N N Proposition(Proveit) ForeachfixedN 2, ≥ 1 lim (A,N)1/s = . s→∞Es δN(A) Moreover,everyclusterconfigurationass ofs-energy →∞ minimizingN-pointconfigurationsonAisanN-pointbest-packing configurationonA. Amusing Exercise LetA=S1,theunitcircleintheplaneR2. Provethatforeachs,0<s < ors =logtheN-throotsofunity(or ∞ anyrotationofthem)areminimals-energypointsforS1. Moreover, theyaretheonlysetsofminimalenergypoints. Moregenerally: ProvethisistrueifK(x,y)=f(x y ),wheref is | − | strictlyconvexanddecreasingon(0,2]. N =3? N =4? S2 = x R3 : x = 1 { ∈ | | } WhataboutminimalRieszenergypointsonS2 for N =2? N =4? S2 = x R3 : x = 1 { ∈ | | } WhataboutminimalRieszenergypointsonS2 for N =2? N =3?

Description:
DISCRETE MINIMAL ENERGY PROBLEMS. Lecture II. E. B. Saff. Center for Constructive Approximation. Vanderbilt University. University of Crete, Heraklion May, 2017
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.