ebook img

Lecture 6 Lin-Kernighan Heuristic. Simulated Annealing PDF

31 Pages·2006·0.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture 6 Lin-Kernighan Heuristic. Simulated Annealing

DM63 HEURISTICS FOR COMBINATORIAL OPTIMIZATION Lecture 6 Lin-Kernighan Heuristic. Simulated Annealing Marco Chiarandini Outline 1. Competition 2. Variable Depth Search 3. Simulated Annealing DM63–HeuristicsforCombinatorialOptimizationProblems 2 Results - Boxplots of Errors Trees Trees Trees Trees city drilling grid unif 2812742569−MST 260581.pl−MST 090481−MST Tours Tours Tours Tours city drilling grid unif 2812742569−FA 260581.pl−NI 090481−RA Fragments Fragments Fragments Fragments city drilling grid unif Stuetzle/tsp−test−NN 2812742569−NN 260581.pl−NN 090481−NN 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 err TSP: Benchmark Instances, Examples DM63–HeuristicsforCombinatorialOptimizationProblems 4 Results - Boxplots of Ranks Trees Trees Trees Trees city drilling grid unif Stuetzle/tsp−test−NN 2812742569−NN 2812742569−MST 2812742569−FA 260581.pl−NN 260581.pl−NI 260581.pl−MST 090481−RA 090481−NN 090481−MST Tours Tours Tours Tours city drilling grid unif Stuetzle/tsp−test−NN 2812742569−NN 2812742569−MST 2812742569−FA 260581.pl−NN 260581.pl−NI 260581.pl−MST 090481−RA 090481−NN 090481−MST Fragments Fragments Fragments Fragments city drilling grid unif Stuetzle/tsp−test−NN 2812742569−NN 2812742569−MST 2812742569−FA 260581.pl−NN 260581.pl−NI 260581.pl−MST 090481−RA 090481−NN 090481−MST 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 ranks Results - Scatter Plots: size vs time 090481−MST l 090481−NN l 090481−RA l 260581.pl−MST 260581.pl−NI 260581.pl−NN 2812742569−FA 2812742569−MST 2812742569−NN Stuetzle/tsp−test−NN 10^2.410^2.610^2.810^3.0 10^2.410^2.610^2.810^3.0 10^2.410^2.610^2.810^3.0 Fragments Tours Trees 10^2 10^2 10^1 10^1 l time 101^0−^10 ll lllll llll llllll lllllllllllllllllll ll lllll llll llllll lllllllllllllllllll ll lllll llll llllll llllllllllllllllll 1100^^−01 10^−2 10^−2 10^−3 10^−3 10^2.410^2.610^2.810^3.0 10^2.410^2.610^2.810^3.0 10^2.410^2.610^2.810^3.0 size DM63–HeuristicsforCombinatorialOptimizationProblems 6 Software Framework for LS Methods From EasyLocal++ by Schaerf and Di Gaspero (2003). DM63–HeuristicsforCombinatorialOptimizationProblems 8 Variable Depth Search I Key idea: Complex steps in large neighborhoods = variable-length sequences of simple steps in small neighborhood. I Use various feasibility restrictions on selection of simple search steps to limit time complexity of constructing complex steps. I Perform Iterative Improvement w.r.t. complex steps. Variable Depth Search (VDS): determine initial candidate solution s tˆ:=s While s is not locally optimal: || Repeat: || || select best feasible neighbor t || | If g(t)<g(tˆ): tˆ:=t || Until construction of complex step has been completed b s:=tˆ DM63–HeuristicsforCombinatorialOptimizationProblems 10 Example: The Lin-Kernighan (LK) Algorithm for the TSP (1) I Complex search steps correspond to sequences of 2-exchange steps and are constructed from sequences of Hamiltonian paths I δ-path: Hamiltonian path p + 1 edge connecting one end of p to interior node of p (‘lasso’ structure): u v a) u w v b) DM63–HeuristicsforCombinatorialOptimizationProblems 11 Basic LK exchange step: I Start with Hamiltonian path (u,...,v): u v a) I Obtain δ-path by adding an edge (v,w): u w v b) I Break cycle by removing edge (w,v0): u w v' v c) I Note: Hamiltonian path can be completed into Hamiltonian cycle by adding edge (v0,u): u w v' v c) DM63–HeuristicsforCombinatorialOptimizationProblems 12

Description:
Example: The Lin-Kernighan (LK) Algorithm for the TSP (1). ▻ Complex search steps correspond to the Graph Partitioning Problem [Kernighan and Lin, 1970];. ▻ the Unconstrained Binary Quadratic . evaluation function ∼= thermodynamic energy. ▻ globally optimal solutions ∼= ground states.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.