ebook img

Lecture 5: linear and affine transformations PDF

58 Pages·2012·0.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lecture 5: linear and affine transformations

Lineartransformations Affinetransformations Transformationsin3D Graphics 2011/2012, 4th quarter Lecture 5 Linear and affine transformations Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Vector transformation: basic idea Multiplication of an n×n matrix with a vector (i.e. a n×1 matrix): (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) a a x a x+a y In 2D: 11 12 = 11 12 a a y a x+a y 21 22 21 22      a a a x a x+a y+a z 11 12 13 11 12 13 In 3D: a21 a22 a23y = a21x+a22y+a23z a a a z a x+a y+a z 31 32 33 31 32 33 The result is a (transformed) vector. Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: scaling To scale with a factor two with respect to the origin, we apply the matrix (cid:18) (cid:19) 2 0 0 2 to a vector: (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 2 0 x 2x+0y 2x = = 0 2 y 0x+2y 2y Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Linear transformations A function T : Rn → Rm is called a linear transformation if it satisfies u+v 1 T((cid:126)u+(cid:126)v) = T((cid:126)u)+T((cid:126)v) for all v (cid:126)u,(cid:126)v ∈ Rn. u 2 T(c(cid:126)v) = cT((cid:126)v) for all (cid:126)v ∈ Rn and all scalars c. T(u+v) T(v) Or (alternatively), if it satisfies T(c (cid:126)u+c (cid:126)v) = c T((cid:126)u)+c T((cid:126)v) 1 2 1 2 for all (cid:126)u,(cid:126)v ∈ Rn and all scalars c ,c . T(u) 1 2 (cid:32) Linear transformations can be represented by matrices Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: scaling We already saw scaling by a factor of 2. In general, a matrix (cid:18) (cid:19) a 0 11 0 a 22 scales the i-th coordinate of a vector by the factor a (cid:54)= 0, i.e. ii (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) a 0 x a x+0y a x 11 11 11 = = 0 a y 0x+a y a y 22 22 22 Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: scaling Scaling does not have to be uniform. Here, we scale with a factor one half in x-direction, and three in y-direction: (cid:18)1 0(cid:19)(cid:18)x(cid:19) (cid:18)1x(cid:19) 2 = 2 0 3 y 3y Q: what is the inverse of this matrix? Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: scaling Using Gaussian elimination to calculate the inverse of a matrix: (cid:18) 1 0 1 0 (cid:19) 2 0 3 0 1 (cid:32) (Gaussian elimination) (cid:18) (cid:19) 1 0 2 0 0 1 0 1 3 Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: projection We can also use matrices to do orthographic projections, for instance, onto the Y-axis: (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 0 0 x 0 = 0 1 y y Q: what is the inverse of this matrix? Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: reflection Reflection in the line y = x boils down to swapping x- and y-coordinates: (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 0 1 x y = 1 0 y x Q: what is the inverse of this matrix? Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations Definition Lineartransformations Examples Affinetransformations Findingmatrices Transformationsin3D Compositionsoftransformations Transposingnormalvectors Example: shearing Shearing in x-direction “pushes things sideways”: (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 1 x x+y = 0 1 y y We can also “push things upwards” with (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 0 x x = 1 1 y x+y Graphics2011/2012,4thquarter Lecture5:linearandaffinetransformations

Description:
Linear transformations A ne transformations Transformations in 3D De nition Examples Finding matrices Compositions of transformations Transposing normal vectors
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.