Lecture 2: ARMA(p,q) models (part 3) Florian Pelgrin UniversityofLausanne,E´coledesHEC Departmentofmathematics(IMEA-Nice) Sept. 2011 - Jan. 2012 FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 1/32 Introduction Motivation Characterize the main properties of ARMA(p,q) models. Estimation of ARMA(p,q) models FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 2/32 Introduction Road map 1 ARMA(1,1) model Definition and conditions Moments Estimation 2 ARMA(p,q) model Definition and conditions Moments Estimation 3 Application 4 Appendix FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 3/32 ARMA(1,1)model Definitionandconditions 1. ARMA(1,1) 1.1. Definition and conditions Definition A stochastic process (Xt)t∈Z is said to be a mixture autoregressive moving average model of order 1, ARMA(1,1), if it satisfies the following equation : X = µ+φX +(cid:15) +θ(cid:15) ∀t t t−1 t t−1 Φ(L)X = µ+Θ(L)(cid:15) t t where θ (cid:54)= 0, θ (cid:54)= 0, µ is a constant term, ((cid:15)t)t∈Z is a weak white noise process with expectation zero and variance σ2 ((cid:15) ∼ WN(0,σ2)), (cid:15) t (cid:15) Φ(L) = 1−φL and Θ(L) = 1+θL. FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 4/32 ARMA(1,1)model Definitionandconditions Simulation of an ARMA(1,1) with (-0.5;-0.5) Simulation of an ARMA(1,1) with (-0.5;0.5) 4 10 2 5 0 0 -2 -5 -4 -10 0 100 200 300 0 100 200 300 Simulation of an ARMA(1,1) with (0.9;-0.5) Simulation of an ARMA(1,1) with (0.9;0.5) 10 4 5 2 0 0 -5 -2 -10 -4 0 100 200 300 0 100 200 300 FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 5/32 ARMA(1,1)model Definitionandconditions The properties of an ARMA(1,1) process are a mixture of those of an AR(1) and MA(1) processes : The (stability) stationarity condition is the one of an AR(1) process (or ARMA(1,0) process) : |φ|<1. The invertibility condition is the one of a MA(1) process (or ARMA(0,1) process) : |θ|<1. The representation of an ARMA(1,1) process is fundamental or causal if : |φ|<1 and |θ|<1. The representation of an ARMA(1,1) process is said to be minimal and causal if : |φ|<1,|θ|<1 and φ(cid:54)=θ. FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 6/32 ARMA(1,1)model Definitionandconditions If (X ) is stable and thus weakly stationary, then (X ) has an infinite t t moving average representation (MA(∞)) : µ X = +(1−φL)−1(1+θL)(cid:15) t t 1−φ ∞ µ (cid:88) = + a (cid:15) k t−k 1−φ k=0 where : a = 1 0 a = φk +θφk−1. k FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 7/32 ARMA(1,1)model Definitionandconditions If (X ) is invertible, then (X ) has an infinite autoregressive t t representation (AR(∞)) : µ (1−θ∗L)−1(1−φL)X = +(cid:15) t 1−θ∗ t i.e. ∞ µ (cid:88) X = = + b X +(cid:15) t 1−θ∗ k t−k t k=1 where θ∗ = −θ, and : b = −θ∗k −θ∗k−1φ. k FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 8/32 ARMA(1,1)model Moments 1.2. Moments Definition Let (X ) denote a stationary stochastic process that has a fundamental t ARMA(1,1) representation, X = µ+φX +(cid:15) +θ(cid:15) . Then : t t−1 t t−1 µ E[X ] = ≡ m t 1−φ 1+2φθ+θ2 γ (0) ≡ V(X ) = σ2 X t 1−φ2 (cid:15) (φ+θ)(1+φθ) γ (1) ≡ Cov [X ,X ] = σ2 X t t−1 1−φ2 (cid:15) γ (h) = φγ (h−1) for |h| > 1. X X Proof : See Appendix 1. FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 9/32 ARMA(1,1)model Moments Definition The autocorrelation function of an ARMA(1,1) process satisfies : 1 if h = 0 ρ (h) = (φ+θ)(1+φθ) if |h| = 1 X 1+2φθ+θ2 φρ (h−1) if |h| > 1. X FlorianPelgrin (HEC) Univariatetimeseries Sept.2011-Jan.2012 10/32
Description: