Lecture Notes in Mathematics 2017 Editors: J.-M.Morel,Cachan B.Teissier,Paris Lars Diening Petteri Harjulehto (cid:129) Peter Ha¨sto¨ Michael Ru˚zˇicˇka (cid:129) Lebesgue and Sobolev Spaces with Variable Exponents 123 LarsDiening PeterHa¨sto¨ LMUMunich UniversityofOulu InstituteofMathematics DepartmentofMathematicalSciences Theresienstr.39 Oulu 80333Munich Finland Germany peter.hasto@helsinki.fi [email protected] PetteriHarjulehto MichaelRu˚zˇicˇka UniversityofHelsinki UniversityofFreiburg DepartmentofMathematicsandStatistics InstituteofMathematics Helsinki Eckerstr.1 Finland 79104Freiburg petteri.harjulehto@helsinki.fi Germany [email protected] ISBN978-3-642-18362-1 e-ISBN978-3-642-18363-8 DOI10.1007/978-3-642-18363-8 SpringerHeidelbergDordrechtLondonNewYork LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2011925547 MathematicsSubjectClassification(2011):46E30,46E35,26D10,31B15,35J60,35Q35,76W05, 76A05,35B65,35D05 (cid:2)c Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names, registered names,trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:deblik,Berlin Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In the past few years the subject of variable exponent spaces has undergone a vast development. Nevertheless, the standard reference is still the article byKova´ˇcikandR´akosn´ıkfrom1991.Thispapercoversonlybasicproperties, such as reflexivity, separability, duality and first results concerning embed- dings and density of smooth functions. In particular, the boundedness of the maximal operator, proved by Diening in 2002, and its consequences are missing. Naturally, progress on more advanced properties is scattered in a large number of articles. The need to introduce students and colleagues to the mainresultsledaround2005tosomeshortsurveyarticles.Moreover,Diening gavelecturesatthe UniversityofFreiburgin2005andR˚uˇziˇckagaveacourse in 2006 at the Spring School NAFSA 8 in Prague. The usefulness of a more comprehensivetreatmentwasclear,andsowedecidedinthesummerof2006 towriteabookcontainingbothbasicandadvancedproperties,withimproved assumptions. Two further lecture courses were given by Ha¨st¨o based on our materialinprogress(2008inOuluand2009attheSpringSchoolinPaseky); another summary is Diening’s 2007 habilitation thesis. It has been our goal to make the book accessible to graduate students as wellasavaluableresourceforresearchers.Wepresentthebasicandadvanced theoryoffunction spaceswith variableexponentsandapplicationsto partial differential equations. Not only do we summarize much of the existing liter- ature but we also present new results of our most recent research, including unifying approaches generated while writing the book. Writingsuchabookwouldnothavebeenpossiblewithoutvarioussources ofsupport.WethankouruniversitiesfortheirhospitalityandtheAcademyof FinlandandtheDFGresearchunit“NonlinearPartialDifferentialEquations: Theoretical and Numerical Analysis” for financial support. We also wish to expressourappreciationofourfellowresearcherswhoseresultsarepresented and ask for understanding for the lapses,omissions and misattributions that may have entered the text. Thanks are also in order to Springer Verlag for their cooperation and assistance in publishing the book. We thank our friends, colleagues and especially our families for their continuous support and patience during the preparation of this book. v vi Preface Finally, we hope that you find this book useful in your journey into the world of variable exponent Lebesgue and Sobolev spaces. Munich, Germany Lars Diening Helsinki, Finland Petteri Harjulehto Oulu, Finland Peter H¨ast¨o Freiburg, Germany Michael R˚uˇziˇcka November 2010 Contents 1 Introduction........................................................... 1 1.1 History of Variable Exponent Spaces .......................... 2 1.2 Structure of the Book ........................................... 4 1.3 Summary of Central Results.................................... 7 1.4 Notation and Background....................................... 10 Part I Lebesgue Spaces 2 A Framework for Function Spaces............................... 21 2.1 Basic Properties of Semimodular Spaces....................... 21 2.2 Conjugate Modulars and Dual Semimodular Spaces.......... 29 2.3 Musielak–Orlicz Spaces: Basic Properties...................... 34 2.4 Uniform Convexity .............................................. 42 2.5 Separability ...................................................... 48 2.6 Conjugate Φ-Functions.......................................... 52 2.7 Associate Spaces and Dual Spaces ............................. 57 2.8 Embeddings and Operators..................................... 66 3 Variable Exponent Lebesgue Spaces ............................ 69 3.1 The Lebesgue Space Φ-Function................................ 69 3.2 Basic Properties ................................................. 73 3.3 Embeddings...................................................... 82 3.4 Properties for Restricted Exponents ........................... 87 3.5 Limit of Exponents.............................................. 92 3.6 Convolution*..................................................... 94 4 The Maximal Operator............................................. 99 4.1 Logarithmic Ho¨lder Continuity................................. 100 4.2 Point-Wise Estimates ........................................... 104 4.3 The Boundedness of the Maximal Operator................... 110 4.4 Weak-Type Estimates and Averaging Operators.............. 115 4.5 Norms of Characteristic Functions ............................. 122 4.6 Mollification and Convolution .................................. 127 vii viii Contents 4.7 Necessary Conditions for Boundedness*....................... 131 4.8 Preimage of the Maximal Operator*........................... 138 5 The Generalized Muckenhoupt Condition*.................... 143 5.1 Non Sufficiency of log-Ho¨lder Continuity*..................... 143 5.2 Class A* ......................................................... 149 5.3 Class A for Variable Exponent Lebesgue Spaces*............. 157 5.4 Class A∞*........................................................ 159 5.5 A Sufficient Condition for the Boundedness of M * .......... 168 5.6 Characterization of (Strong-)Domination* .................... 175 5.7 The Case of Lebesgue Spaces with Variable Exponents*..... 180 5.8 Weighted Variable Exponent Lebesgue Spaces*............... 192 6 Classical Operators.................................................. 199 6.1 Riesz Potentials.................................................. 199 6.2 The Sharp Operator M(cid:2)f....................................... 206 6.3 Caldero´n–ZygmundOperators.................................. 208 7 Transfer Techniques................................................. 213 7.1 Complex Interpolation .......................................... 213 7.2 Extrapolation Results ........................................... 218 7.3 Local-to-Global Results ......................................... 222 7.4 Ball/Cubes-to-John.............................................. 237 Part II Sobolev Spaces 8 Introduction to Sobolev Spaces .................................. 247 8.1 Basic Properties ................................................. 247 8.2 Poincar´e Inequalities ............................................ 252 8.3 Sobolev-Poincar´eInequalities and Embeddings ............... 265 8.4 Compact Embeddings........................................... 272 8.5 Extension Operator.............................................. 275 8.6 Limiting Cases of Sobolev Embeddings*....................... 283 9 Density of Regular Functions ..................................... 289 9.1 Basic Results on Density........................................ 290 9.2 Density with Continuous Exponents ........................... 293 9.3 Density with Discontinuous Exponents*....................... 299 9.4 Density of Continuous Functions*.............................. 305 9.5 The Lipschitz Truncation Method* ............................ 310 10 Capacities.............................................................. 315 10.1 Sobolev Capacity ................................................ 315 10.2 Relative Capacity................................................ 322 10.3 The Relationship Between the Capacities ..................... 331 10.4 Sobolev Capacity and Hausdorff Measure ..................... 334 Contents ix 11 Fine Properties of Sobolev Functions........................... 339 11.1 Quasicontinuity.................................................. 339 11.2 Sobolev Spaces with Zero Boundary Values................... 345 11.3 Exceptional Sets in Variable Exponent Sobolev Spaces ...... 350 11.4 Lebesgue Points.................................................. 352 11.5 Failure of Existence of Lebesgue Points* ...................... 360 12 Other Spaces of Differentiable Functions ...................... 367 12.1 Trace Spaces ..................................................... 368 12.2 Homogeneous Sobolev Spaces................................... 378 12.3 Sobolev Spaces with Negative Smoothness .................... 383 12.4 Bessel Potential Spaces* ........................................ 388 12.5 Besov and Triebel–Lizorkin Spaces* ........................... 392 Part III Applications to Partial Differential Equations 13 Dirichlet Energy Integral and Laplace Equation ............. 401 13.1 The One Dimensional Case..................................... 402 13.2 Minimizers ....................................................... 412 13.3 Harmonic and Superharmonic Functions ...................... 417 13.4 Harnack’s Inequality for A-harmonic Functions............... 421 14 PDEs and Fluid Dynamics ........................................ 437 14.1 Poisson Problem................................................. 437 14.2 Stokes Problem .................................................. 446 14.3 Divergence Equation and Consequences ....................... 459 14.4 ElectrorheologicalFluids........................................ 470 References................................................................... 483 List of Symbols ............................................................ 501 Index ......................................................................... 505