ebook img

Latent Markov Models for Longitudinal Data PDF

248 Pages·2012·2.406 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Latent Markov Models for Longitudinal Data

Latent Markov Models for Longitudinal Data © 2012 by Taylor & Francis Group, LLC Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Series Editors A. Colin Cameron J. Scott Long University of California, Davis, USA Indiana University, USA Andrew Gelman Sophia Rabe-Hesketh Columbia University, USA University of California, Berkeley, USA Anders Skrondal Norwegian Institute of Public Health, Norway Aims and scope Large and complex datasets are becoming prevalent in the social and behavioral sciences and statistical methods are crucial for the analysis and interpretation of such data. This series aims to capture new developments in statistical methodology with particular relevance to applications in the social and behavioral sciences. It seeks to promote appropriate use of statistical, econometric and psychometric methods in these applied sciences by publishing a broad range of reference works, textbooks and handbooks. The scope of the series is wide, including applications of statistical methodology in sociology, psychology, economics, education, marketing research, political science, criminology, public policy, demography, survey methodology and official statistics. The titles included in the series are designed to appeal to applied statisticians, as well as students, researchers and practitioners from the above disciplines. The inclusion of real examples and case studies is therefore essential. Published Titles Analysis of Multivariate Social Science Data, Second Edition David J. Bartholomew, Fiona Steele, Irini Moustaki, and Jane I. Galbraith Applied Survey Data Analysis Steven G. Heeringa, Brady T. West, and Patricia A. Berglund Bayesian Methods: A Social and Behavioral Sciences Approach, Second Edition Jeff Gill Foundations of Factor Analysis, Second Edition Stanley A. Mulaik Informative Hypotheses: Theory and Practice for Behavioral and Social Scientists Herbert Hoijtink Latent Markov Models for Longitudinal Data Francesco Bartolucci, Alessio Farcomeni, and Fulvia Pennoni Linear Causal Modeling with Structural Equations Stanley A. Mulaik Multiple Correspondence Analysis and Related Methods Michael Greenacre and Jorg Blasius Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences Brian S. Everitt Statistical Test Theory for the Behavioral Sciences Dato N. M. de Gruijter and Leo J. Th. van der Kamp © 2012 by Taylor & Francis Group, LLC Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Latent Markov Models for Longitudinal Data Francesco Bartolucci Alessio Farcomeni Fulvia Pennoni © 2012 by Taylor & Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150813 International Standard Book Number-13: 978-1-4665-8371-9 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures xi List of Tables xiii Preface xvii 1 Overview on latent Markov modeling 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review on latent Markov models . . . . . . . 4 1.3 Alternative approaches . . . . . . . . . . . . . . . . . . 7 1.4 Example datasets . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Marijuana consumption dataset . . . . . . . . . . 8 1.4.2 Criminal conviction history dataset . . . . . . . . 9 1.4.3 Labor market dataset . . . . . . . . . . . . . . . 11 1.4.4 Student math achievement dataset . . . . . . . . 13 2 BackgroundonlatentvariableandMarkovchainmodels 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Latent variable models . . . . . . . . . . . . . . . . . . 17 2.3 Expectation-Maximization algorithm . . . . . . . . . . 21 2.4 Standard errors . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Latent class model . . . . . . . . . . . . . . . . . . . . . 26 2.5.1 Basic version . . . . . . . . . . . . . . . . . . . . 27 2.5.2 Advanced versions . . . . . . . . . . . . . . . . . 28 2.5.3 Maximum likelihood estimation . . . . . . . . . . 32 2.5.4 Selection of the number of latent classes . . . . . 33 2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Marijuana consumption dataset . . . . . . . . . . 35 2.6.2 Criminal conviction history dataset . . . . . . . . 38 2.7 Markov chain model for longitudinal data . . . . . . . . 41 2.7.1 Basic version . . . . . . . . . . . . . . . . . . . . 41 2.7.2 Advanced versions . . . . . . . . . . . . . . . . . 43 2.7.3 Likelihood inference . . . . . . . . . . . . . . . . 44 2.7.4 Maximum likelihood estimation . . . . . . . . . . 45 v © 2012 by Taylor & Francis Group, LLC vi Contents 2.7.5 Model selection . . . . . . . . . . . . . . . . . . . 46 2.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . 46 2.8.1 Marijuana consumption dataset . . . . . . . . . . 46 2.8.2 Criminal conviction history dataset . . . . . . . . 48 3 Basic latent Markov model 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Univariate formulation . . . . . . . . . . . . . . . . . . 51 3.3 Multivariate formulation . . . . . . . . . . . . . . . . . 56 3.4 Model identifiability . . . . . . . . . . . . . . . . . . . . 58 3.5 Maximum likelihood estimation . . . . . . . . . . . . . 59 3.5.1 Expectation-Maximizationalgorithm . . . . . . . 60 3.5.1.1 Univariate formulation . . . . . . . . . 60 3.5.1.2 Multivariate formulation . . . . . . . . 63 3.5.1.3 Initializationofthealgorithmandmodel identifiability . . . . . . . . . . . . . . . 64 3.5.2 Alternativealgorithmsformaximumlikelihoodes- timation . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.3 Standard errors . . . . . . . . . . . . . . . . . . . 67 3.6 Selection of the number of latent states . . . . . . . . . 67 3.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . 68 3.7.1 Marijuana consumption dataset . . . . . . . . . . 69 3.7.2 Criminal conviction history dataset . . . . . . . . 74 Appendix 1: Efficient implementation of recursions . . . . . . 77 4 Constrained latent Markov models 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Constraints on the measurement model . . . . . . . . . 80 4.2.1 Univariate formulation . . . . . . . . . . . . . . . 80 4.2.1.1 Binary response variables . . . . . . . . 81 4.2.1.2 Categoricalresponse variables . . . . . 83 4.2.2 Multivariate formulation . . . . . . . . . . . . . . 85 4.3 Constraints on the latent model . . . . . . . . . . . . . 86 4.3.1 Linear model on the transition probabilities . . . 87 4.3.2 Generalized linear model on the transition proba- bilities . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4 Maximum likelihood estimation . . . . . . . . . . . . . 90 4.4.1 Expectation-Maximizationalgorithm . . . . . . . 91 4.4.1.1 Univariate formulation . . . . . . . . . 91 4.4.1.2 Multivariate formulation . . . . . . . . 93 4.4.1.3 Initializationofthealgorithmandmodel identifiability . . . . . . . . . . . . . . . 93 © 2012 by Taylor & Francis Group, LLC Contents vii 4.5 Model selection and hypothesis testing . . . . . . . . . 94 4.5.1 Model selection . . . . . . . . . . . . . . . . . . . 94 4.5.2 Hypothesis testing . . . . . . . . . . . . . . . . . 95 4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . 96 4.6.1 Marijuana consumption dataset . . . . . . . . . . 96 4.6.2 Criminal conviction history dataset . . . . . . . . 100 Appendix 1: Marginal parametrization . . . . . . . . . . . . 102 Appendix 2: Implementation of the M-step . . . . . . . . . . 105 5 Including individual covariates and relaxing basic model assumptions 109 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Covariates in the measurement model . . . . . . . . . . 112 5.3.1 Univariate formulation . . . . . . . . . . . . . . . 112 5.3.2 Multivariate formulation . . . . . . . . . . . . . . 114 5.4 Covariates in the latent model . . . . . . . . . . . . . . 115 5.5 Interpretation of the resulting models . . . . . . . . . . 116 5.6 Maximum likelihood estimation . . . . . . . . . . . . . 117 5.6.1 Expectation-Maximizationalgorithm . . . . . . . 118 5.7 Observed information matrix, identifiability, and stan- dard errors . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.8 Relaxing local independence . . . . . . . . . . . . . . . 121 5.8.1 Conditional serial dependence . . . . . . . . . . . 121 5.8.2 Conditional contemporary dependence . . . . . . 123 5.9 Higher order extensions . . . . . . . . . . . . . . . . . . 126 5.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . 130 5.10.1 Criminal conviction history dataset . . . . . . . . 130 5.10.2 Labor market dataset . . . . . . . . . . . . . . . 134 Appendix 1: Multivariate link function . . . . . . . . . . . . 137 6 Including random effects and extension to multilevel data 139 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 Random-effects formulation . . . . . . . . . . . . . . . . 139 6.2.1 Model assumptions . . . . . . . . . . . . . . . . . 140 6.2.1.1 Random effects in the measurement model . . . . . . . . . . . . . . . . . . . 140 6.2.1.2 Random effects in the latent model . . 142 6.2.2 Manifest distribution . . . . . . . . . . . . . . . . 143 6.3 Maximum likelihood estimation . . . . . . . . . . . . . 145 6.4 Multilevel formulation . . . . . . . . . . . . . . . . . . . 148 © 2012 by Taylor & Francis Group, LLC viii Contents 6.4.1 Model assumptions . . . . . . . . . . . . . . . . . 148 6.4.2 Manifestdistributionandmaximumlikelihoodes- timation . . . . . . . . . . . . . . . . . . . . . . . 151 6.5 Application to the student math achievement dataset . 152 7 Advanced topics about latent Markov modeling 157 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2 Dealing with continuous response variables . . . . . . . 157 7.2.1 Linear regression . . . . . . . . . . . . . . . . . . 158 7.2.2 Quantile regression . . . . . . . . . . . . . . . . . 159 7.2.3 Estimation . . . . . . . . . . . . . . . . . . . . . 160 7.3 Dealing with missing responses . . . . . . . . . . . . . . 162 7.4 Additional computational issues . . . . . . . . . . . . . 164 7.4.1 MaximizationofthelikelihoodthroughtheNewton- Raphson algorithm . . . . . . . . . . . . . . . . . 164 7.4.1.1 A general description of the algorithm . 164 7.4.1.2 Use for latent Markov models. . . . . . 165 7.4.2 Parametric bootstrap . . . . . . . . . . . . . . . 166 7.5 Decoding and forecasting . . . . . . . . . . . . . . . . . 168 7.5.1 Local decoding . . . . . . . . . . . . . . . . . . . 169 7.5.2 Global decoding . . . . . . . . . . . . . . . . . . 170 7.5.3 Forecasting . . . . . . . . . . . . . . . . . . . . . 171 7.6 Selection of the number of latent states . . . . . . . . . 172 8 Bayesian latent Markov models 177 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 177 8.2 Prior distributions . . . . . . . . . . . . . . . . . . . . . 178 8.2.1 Basic latent Markov model . . . . . . . . . . . . 178 8.2.2 Constrained and extended latent Markov models 180 8.3 Bayesian inference via Reversible Jump . . . . . . . . . 181 8.3.1 Reversible Jump algorithm . . . . . . . . . . . . 181 8.3.2 Post-processingthe Reversible Jump output . . . 186 8.3.3 Inference based on the simulated posterior distri- bution . . . . . . . . . . . . . . . . . . . . . . . . 187 8.4 Alternative sampling strategy . . . . . . . . . . . . . . 188 8.4.1 Continuousbirthanddeathprocessbasedondata augmentation . . . . . . . . . . . . . . . . . . . . 188 8.4.2 Parallelsampling . . . . . . . . . . . . . . . . . . 190 8.5 Application to the labor market dataset . . . . . . . . . 190 © 2012 by Taylor & Francis Group, LLC Contents ix A Software 197 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 197 A.2 Package LMest . . . . . . . . . . . . . . . . . . . . . . . 197 List of Main Symbols 209 Bibliography 215 Index 231 © 2012 by Taylor & Francis Group, LLC © 2012 by Taylor & Francis Group, LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.