ebook img

Latent Feature Models for Dyadic Prediction PDF

293 Pages·2013·1.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Latent Feature Models for Dyadic Prediction

UC San Diego UC San Diego Electronic Theses and Dissertations Title Latent feature models for dyadic prediction / Permalink https://escholarship.org/uc/item/4xw874p5 Author Menon, Aditya Krishna Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITYOFCALIFORNIA,SANDIEGO Latentfeaturemodelsfordyadicprediction Adissertationsubmittedinpartialsatisfactionofthe requirementsforthedegreeofDoctorofPhilosophy in ComputerScience by AdityaKrishnaMenon Committeeincharge: ProfessorCharlesElkan,Chair ProfessorGertLanckriet ProfessorRamamohanPaturi ProfessorLawrenceSaul ProfessorNunoVasconcelos 2013 Copyright AdityaKrishnaMenon,2013 Allrightsreserved. TheDissertationofAdityaKrishnaMenonisapprovedandisacceptable inqualityandformforpublicationonmicrofilmandelectronically: Chair UniversityofCalifornia,SanDiego 2013 iii DEDICATION Tomyparents iv EPIGRAPH Nothinghappenshere, Nothinggetsdone, Butyougettolikeit. DavidMcComb v TABLEOFCONTENTS SignaturePage........................................................ iii Dedication ........................................................... iv Epigraph............................................................. v TableofContents ..................................................... vi ListofFigures ........................................................ xii ListofTables ......................................................... xiv Acknowledgements.................................................... xvi Vita ................................................................. xix AbstractoftheDissertation ............................................. xxi Chapter1 Introduction ............................................... 1 1.1 Recap: thevalueofsupervisedlearning ........................... 1 1.2 Fromsupervisedlearningtodyadicprediction...................... 3 1.2.1 Collaborativefilteringandfriends ......................... 3 1.2.2 Dyadicprediction: aninformaloverview ................... 5 1.3 Questionstobeaddressed....................................... 7 1.4 Contributionsofthisdissertation ................................. 8 1.5 Organizationofthisdissertation ................................. 10 Chapter2 OverviewofDyadicPrediction ............................... 12 2.1 Aformaldefinitionofdyadicprediction........................... 12 2.2 Exampleinstantiationsoftheframework .......................... 13 2.2.1 Collaborativefiltering ................................... 13 2.2.2 Linkprediction ......................................... 14 2.2.3 Responseprediction..................................... 15 2.2.4 Itemresponsetheory .................................... 16 2.3 Generalityoftheframework..................................... 16 2.3.1 Trainandtestdistributions ............................... 16 2.3.2 Labelspace ............................................ 18 2.3.3 Side-information........................................ 19 2.4 Relationshiptoexistingframeworks .............................. 20 2.4.1 Supervisedlearning ..................................... 20 2.4.2 Matrixcompletion ...................................... 21 2.4.3 Weightedlinkprediction ................................. 22 vi 2.4.4 RandomeffectsmodelsandANOVA....................... 23 2.5 Overviewofdyadicpredictionmodels ............................ 24 2.5.1 Unsupervisedmodels.................................... 25 2.5.2 Feature-basedmodels ................................... 26 2.5.3 Clusteringmodels....................................... 28 2.5.4 Latentfeaturemodels.................................... 29 2.6 Analysisofthelatentfeatureapproach ............................ 40 2.6.1 Strengthsandweaknesses ................................ 40 2.6.2 Traininglatentfeaturemodels ............................ 41 2.6.3 Connectionstoothermodels.............................. 42 2.6.4 Acommentontheindependenceassumption ................ 45 Chapter3 LFL:aLog-LinearModelforDyadicPrediction................. 47 3.1 Motivation: agenericdyadicpredictionmodel ..................... 47 3.2 Afirstattemptatalog-linearmodel .............................. 48 3.2.1 Log-linearmodelsingeneral ............................. 48 3.2.2 Applyingthelog-linearframeworktodyadicprediction ....... 50 3.2.3 Aweaknessofthemodel: thepropensityproblem............ 51 3.3 LFL:alog-linearmodelwithlatentfeatures ....................... 51 3.3.1 Addinglatentfeaturestothelog-linearmodel ............... 51 3.3.2 Exploitingside-information .............................. 53 3.3.3 Trainingthemodel ...................................... 53 3.3.4 Makingpredictions ..................................... 55 3.4 AnalysisoftheLFLmodel...................................... 56 3.4.1 StrengthsandweaknessesoftheLFLmodel ................ 56 3.4.2 Differentperspectivesonthemodel........................ 57 3.4.3 Dowegetmeaningfulprobabilities? ....................... 60 3.5 ExtensionsandvariationsontheLFLmodel ....................... 60 3.5.1 Alternatefactorizations .................................. 61 3.5.2 Fixingabaseclass ...................................... 62 3.5.3 Finer-grainedweightsforside-information.................. 63 3.6 Comparisontoexistingmodels .................................. 64 3.6.1 PCAandprobabilisticsvariants ........................... 64 3.6.2 Statisticalnetworkmodels................................ 66 3.6.3 Othermodels........................................... 66 3.7 Experimentaldesign ........................................... 68 3.7.1 Aimsoftheexperiments ................................. 68 3.7.2 Hyperparameterselectionprocedure ....................... 69 3.7.3 Practicaldetailsontrainingprocedure...................... 70 3.7.4 Implementationdetails................................... 72 3.8 Experimentalresults ........................................... 73 3.8.1 Arelocaloptimaaconcern? .............................. 73 vii 3.8.2 Isthemodelpowerful? .................................. 74 3.8.3 ApplicationtoIRT:doesthemodelworkinpractice? ......... 75 3.9 Conclusion ................................................... 80 3.10 Acknowledgements ............................................ 81 Chapter4 ModellingRatingDistributions: ApplicationtoCollaborativeFiltering 82 4.1 AdvantagesofLFLforcollaborativefiltering ...................... 82 4.1.1 Modellingratingdistributions............................. 83 4.1.2 Addressingthecold-startproblem ......................... 85 4.2 IsLFLappropriateforcollaborativefiltering? ...................... 87 4.2.1 Ordinalnatureofcollaborativefilteringlabels ............... 87 4.2.2 Ispredictingthemodeappropriate? ........................ 88 4.2.3 Ismaximizinglog-likelihoodappropriate? .................. 89 4.3 ModifyingLFLforcollaborativefilteringproblems ................. 91 4.3.1 Modifyingthetrainingobjectivefunction ................... 91 4.3.2 Modifyingtheunderlyingmodel .......................... 92 4.3.3 Whichapproachisbetter? ................................ 94 4.4 Analysisofthemodel .......................................... 96 4.4.1 Matrixfactorizationperspective ........................... 96 4.4.2 Arerating-specificweightsmeaningful? .................... 97 4.5 Furtherextensionsofthemodel.................................. 98 4.5.1 Anchorpointsforprediction .............................. 98 4.5.2 Otherapproachestocapturingordinalstructure .............. 99 4.5.3 Incorporatingcollaborativefilteringspecificextensions ....... 100 4.6 Comparisontoexistingmodels .................................. 101 4.6.1 Comparisontoexistingmodelsforratingdistributions ........ 101 4.6.2 Comparisontoexistingschemesforcold-startcorrection ...... 106 4.7 Experimentaldesign ........................................... 108 4.7.1 Aimsoftheexperiments ................................. 108 4.8 Experimentalresults ........................................... 109 4.8.1 Does the choice of scoring and training scheme affect perfor- mance?................................................ 109 4.8.2 Comparisononbenchmarkdatasets ........................ 110 4.8.3 Resultsinthecold-startsetting............................ 119 4.8.4 Arethelearnedprobabilitiesmeaningful?................... 122 4.9 Conclusion ................................................... 123 4.10 Acknowledgements ............................................ 125 Chapter5 ApplicationtoLinkPrediction................................ 130 5.1 Linkprediction: overviewandexistingmodels ..................... 130 5.1.1 Problemdefinition ...................................... 130 5.1.2 Desiderataforalinkpredictionmodel...................... 131 5.1.3 Existinglinkpredictionmethods .......................... 133 viii 5.1.4 Doexistingmethodsmeetthedesiderata?................... 136 5.2 ApplyingtheLFLmodeltolinkprediction ........................ 139 5.2.1 DoesLFLmeetthedesiderata?............................ 139 5.2.2 Handlinggenericgraphs: undirected,directed,multirelational.. 141 5.3 Overcomingclassimbalanceforunweightedgraphs................. 146 5.4 Experimentaldesign ........................................... 149 5.4.1 Aimsoftheexperiments ................................. 149 5.4.2 Descriptionofdatasets................................... 150 5.4.3 Evaluationmethodology ................................. 152 5.5 Experimentalresults ........................................... 153 5.5.1 Resultsforbinaryedges ................................. 153 5.5.2 Resultsfornominaledges ................................ 160 5.6 Conclusion ................................................... 161 5.7 Acknowledgements ............................................ 162 Chapter6 PredictingClickthroughRates: ApplicationtoResponsePrediction. 163 6.1 Backgroundandrelatedwork.................................... 164 6.1.1 Theresponsepredictionproblem .......................... 164 6.1.2 Challengesinresponseprediction ......................... 165 6.1.3 Formaldefinitions ...................................... 166 6.1.4 Existingmodels ........................................ 167 6.2 Fromcollaborativefilteringtoresponseprediction .................. 168 6.2.1 Adyadicinterpretationofresponseprediction ............... 169 6.2.2 Overviewofourlatentfeaturemodel....................... 169 6.3 Aconfidence-weightedfactorizationmodel ........................ 171 6.3.1 Confidence-weightedfactorization......................... 171 6.3.2 Comparisontoexistingmethods........................... 173 6.4 Incorporatingside-information .................................. 175 6.4.1 Ajointfactorizationandfeaturemodel ..................... 175 6.4.2 Aniterativerefinementprocedure ......................... 176 6.5 Incorporatinghierarchies ....................................... 178 6.5.1 Hierarchicalregularization ............................... 178 6.5.2 Agglomeratefitting ..................................... 180 6.5.3 Residualfitting ......................................... 182 6.5.4 Puttingitalltogether: ahybridmethod ..................... 182 6.5.5 Handlingcold-startpagesandads ......................... 183 6.6 Experimentaldesign ........................................... 183 6.6.1 Aimsoftheexperiments ................................. 183 6.6.2 Datasetsused .......................................... 184 6.6.3 Methodscompared...................................... 185 6.6.4 Evaluationmethodology ................................. 186 6.7 Experimentalresults ........................................... 187 ix

Description:
in quality and form for publication on microfilm and electronically: Aditya Krishna Menon, Krishna-Prasad Chitrapura, Sachin Garg, Deepak Agarwal, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Tauman Kalai.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.