ebook img

Laser alignment, Raman path alignment and Calibration PDF

171 Pages·2016·7.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser alignment, Raman path alignment and Calibration

POLITECNICO DI MILANO Scuola di Ingegneria Industriale e dell’Informazione Corso di Laurea Magistrale in Chemical Engineering DESIGN AND DEVELOPMENT OF AN OPERANDO RAMAN ANNULAR REACTOR FOR COMBINED SPECTROSCOPIC AND KINETIC STUDIES Relatore: Prof. Matteo Maestri Correlatori: Prof. Alessandro Donazzi Dr. Ali Maghsoumi Tesi di Laurea Magistrale di: Federico Consonni (Matricola: 836240) Fabio Nanni (Matricola: 836759) Anno Accademico 2015 – 2016 2 Table of Contents List of Figures ......................................................................................................................................................... 7 List of Tables ......................................................................................................................................................... 11 Abstract .................................................................................................................................................................. 12 Riassunto ................................................................................................................................................................ 13 1. State of the art ............................................................................................................................................... 14 1.1 Introduction ............................................................................................................................................. 14 1.2 Structure-performance relationship ...................................................................................................... 15 1.3 Raman spectroscopy in catalysis ........................................................................................................... 17 1.4 Raman cells for Raman spectroscopy of solids in controlled environment ................................... 20 1.4.1 Ex situ, in situ and operando cells............................................................................................. 20 1.4.2 Evolution of in situ and operando Raman cells ......................................................................... 21 1.5 Objective of this work ............................................................................................................................ 24 1.6 Thesis summary ....................................................................................................................................... 27 2. Raman spectroscopy .................................................................................................................................... 29 2.1 Basic theory .............................................................................................................................................. 29 2.1.1 Selection rules for vibrational spectroscopies.......................................................................... 30 2.1.2 Advantages of Raman spectroscopy ......................................................................................... 32 2.1.3 Limitations of Raman spectroscopy ......................................................................................... 32 2.1.4 Raman spectra .............................................................................................................................. 33 2.2 Raman instrumentation .......................................................................................................................... 36 2.2.1 Pre-sample components ............................................................................................................. 36 2.2.2 Post-sample components............................................................................................................ 37 2.2.3 Jasco Raman ................................................................................................................................. 40 2.3 Case study: CO adsorption on Rh ........................................................................................................ 44 2.3.1 Software description .................................................................................................................... 44 2.3.2 Setup of the instrument: Laser alignment, Raman path alignment and Calibration .......... 45 3 2.3.2.1 Laser alignment .................................................................................................................... 45 2.3.2.2 Raman path alignment ........................................................................................................ 46 2.3.2.3 Calibration ............................................................................................................................ 48 2.3.3 Spectrum recording ..................................................................................................................... 50 2.3.4 Experimental Results................................................................................................................... 53 2.4 Conclusions .............................................................................................................................................. 56 3. Design of an operando Raman reactor ..................................................................................................... 57 3.1 Constraints in operando Raman ............................................................................................................... 57 3.1.1 Kinetic Constraints ...................................................................................................................... 58 3.1.2 Optical Constraints ...................................................................................................................... 59 3.1.3 Material constraints ..................................................................................................................... 61 3.1.4 General features of the solution ................................................................................................ 63 3.2 Design procedure .................................................................................................................................... 64 3.3 Basic design .............................................................................................................................................. 66 3.3.1 System geometry .......................................................................................................................... 67 3.4 Integrated Raman-oven design ............................................................................................................. 69 3.4.1 System geometry .......................................................................................................................... 69 3.4.2 Modelling in OpenFOAM .......................................................................................................... 70 3.4.2.1 Results ................................................................................................................................... 70 3.5 External Raman probe design ............................................................................................................... 74 3.5.1 System geometry and constraints .............................................................................................. 74 3.5.2 Thermal insulation modelling and selection ............................................................................ 75 3.5.3 Modelling of Internal Temperature Profiles ............................................................................ 80 3.5.3.1 Results ................................................................................................................................... 83 3.5.4 Modelling of external temperature profiles .............................................................................. 84 3.5.4.1 Results ................................................................................................................................... 87 3.6 Experimental Setup ................................................................................................................................. 89 3.6.1 Plant construction ........................................................................................................................ 89 4 3.6.1.1 Raman probe supporting structure ................................................................................... 96 3.6.2 Experimental temperature Profiles ........................................................................................... 98 3.6.3 Comparison with model results ................................................................................................. 99 3.6.4 Experimental temperature profile with drilled oven ............................................................ 100 3.7 Conclusions ............................................................................................................................................ 102 4. Experimental tests ...................................................................................................................................... 104 4.1 Plant description .................................................................................................................................... 104 4.1.1 Feed section ................................................................................................................................ 105 4.1.2 Reactor section ........................................................................................................................... 107 4.1.3 Analysis section .......................................................................................................................... 107 4.2 Instrument calibration .......................................................................................................................... 110 4.2.1 Flow controller calibration ....................................................................................................... 110 4.2.2 GC calibration ............................................................................................................................ 111 4.3 Testing of operando Raman rector ........................................................................................................ 115 4.3.1 Focusing procedure ................................................................................................................... 115 4.3.2 Comparison with ex situ data .................................................................................................... 120 4.4 Results of operando tests ........................................................................................................................ 122 4.4.1 Temperature stability of Raman spectra ................................................................................. 122 4.4.2 In situ measurements of model reactions ................................................................................ 123 4.4.3 First operando test: catalyst conditioning .................................................................................. 127 4.4.3.1 Standard conditioning procedure .................................................................................... 127 4.4.3.2 Phenomenology of catalyst conditioning ....................................................................... 128 4.4.3.3 First conditioning run – results ....................................................................................... 129 4.4.3.4 Second conditioning run – results .................................................................................. 133 4.4.3.5 Discussion of results ......................................................................................................... 137 4.5 Conclusions ............................................................................................................................................ 139 5. Conclusions ................................................................................................................................................. 140 Appendix A - Principles of Raman Spectroscopy ......................................................................................... 143 5 A.1 History ................................................................................................................................................. 143 A.2 Primary principle ................................................................................................................................ 144 A.3 Molecular vibrations .......................................................................................................................... 145 A.4 Vibrations of polyatomic molecules ................................................................................................ 147 A.4 Factors determining vibrational frequencies .................................................................................. 147 A.5 Origin of Raman spectra ................................................................................................................... 148 A.6 Resonance Raman and fluorescence ............................................................................................... 150 Appendix B - CFD ............................................................................................................................................. 152 B.1 OpenFOAM ....................................................................................................................................... 152 B.1.1 Mesh generation ......................................................................................................................... 153 B.1.2 Numerical methods ................................................................................................................... 154 B.1.2.1 Solvers ................................................................................................................................. 154 B.1.2.2 Radiation models ............................................................................................................... 155 Appendix C - Catalyst preparation ................................................................................................................... 156 C.1 Support preparation ........................................................................................................................... 156 C.2 Preparation of catalytic powders ...................................................................................................... 157 C.3 Preparation of the catalytic slurry .................................................................................................... 159 C.4 Preparation of supported catalyst .................................................................................................... 160 Acknowledgments .............................................................................................................................................. 164 References ............................................................................................................................................................ 165 6 List of Figures Figure 1.1 - Development of ammonia production and world population [3]. ........................................... 14 Figure 1.2 - Chronology of occurrences of Raman spectroscopy containing publications in heterogeneous catalysis literature [12]. .............................................................................................................. 17 Figure 1.3 - Designs of reaction in-situ Raman cells. (A) Schrader [31] , (B) Lunsford [32], (C) Volta [33], (D) Stair [34]. (Source: M.A. Bañares [11]). ...................................................................................................... 22 Figure 1.4 - Designs of Raman cells that deliver catalyst performance corresponding to those of ideal reactors. (A) Mestl et al. [35]; (B) Bañares et al. [36]. ...................................................................................... 23 Figure 1.5 - Schematic representation of a reactor set-up with combined UV-Vis/Raman spectroscopy for analysis through a quartz tube reactor [37]. ................................................................................................ 24 Figure 1.6 - Sketch of the annular reactor used in experimental tests. ......................................................... 26 Figure 2.1 - Energy level diagram showing the states involved in Raman signals [50]............................... 29 Figure 2.2 - Polarizability change in a CO molecule by symmetric stretching. .......................................... 30 2 Figure 2.3 - Raman spectrum of CCl with a 488 nm laser excitation. ......................................................... 34 4 Figure 2.4 - Schematic of a typical continuous wave gas laser. ...................................................................... 36 Figure 2.5 - Beam Splitter and Dichroic Mirror. .............................................................................................. 37 Figure 2.6 - Effect of edge and notch filters on incoming wavelength. ....................................................... 38 Figure 2.7 - Example of a white light grating. .................................................................................................. 39 Figure 2.8 - Schematic of a photon counting detector. ................................................................................... 40 Figure 2.9 - Jasco NRS-4100 Raman spectrometer, with laser source and external probe on the bottom right. ........................................................................................................................................................................ 41 Figure 2.10 - Block diagram of Jasco Raman‟s components. ......................................................................... 41 Figure 2.11 - Automatic stage and objective lens revolver. ............................................................................ 42 Figure 2.12 -Micro Spectra Measurement screen. ................................................................................................... 44 Figure 2.13 - Optical Alignment window. ............................................................................................................. 45 Figure 2.14 - Wrong and good laser alignments. ............................................................................................. 46 Figure 2.15 - Slit focusing system. ...................................................................................................................... 47 Figure 2.16 - Raman path alignment window. .................................................................................................. 47 Figure 2.17 - Example of Raman path alignment in X-Y directions. ........................................................... 48 Figure 2.18 - Silicon spectrum before calibration. ........................................................................................... 49 Figure 2.19 - Silicon spectrum after calibration. .............................................................................................. 49 Figure 2.20 - Microscope View window. ................................................................................................................ 50 Figure 2.21 - Measurement Parameter window. ..................................................................................................... 51 7 Figure 2.22 - Three recording options: single point, line and mapping. .............................................................. 53 Figure 2.23 - Micro Imaging Analysis main screen. .............................................................................................. 53 Figure 2.24 - CO over Rh Raman spectrum. .................................................................................................... 54 Figure 2.25 - CO-Rh Raman peaks. ................................................................................................................... 55 Figure 3.1 - Sketch of the annular reactor used for operando experiments. ................................................... 59 Figure 3.2 - Effect of probe tilting on Raman signal collection. ................................................................... 60 Figure 3.3 - Relation between laser beam width and working distance. ....................................................... 61 Figure 3.4 - Schematic explanation of refraction through a glass medium. ................................................. 61 Figure 3.5 - Transmission spectrum of uncoated sapphire glass windows [62]. ......................................... 62 Figure 3.6 - Preliminary scheme of operando Raman annular reactor. ........................................................ 63 Figure 3.7 - Flow diagram illustrating the design procedure. ......................................................................... 64 Figure 3.8 - Temperature profile inside the oven. ........................................................................................... 66 Figure 3.9 - System geometry of solution with Raman probe positioned in the oven: probe (orange), oven (green), quartz disc (blue), quartz reactor (black) and hot air (purple). .............................................. 67 Figure 3.10 - Detail of the hole for the Raman probe, respectively with and without the quartz glass... 68 Figure 3.11 - system geometry of second solution: Raman probe is completely outside the oven. ......... 69 Figure 3.12 - Alumina tube mesh. ...................................................................................................................... 70 Figure 3.13 - Simulation result for the case at 600 °C. .................................................................................... 71 Figure 3.14 - Different mesh discretization. ..................................................................................................... 71 Figure 3.15 - Temperature profiles of different meshes. ................................................................................ 72 Figure 3.16 - Temperature profiles for cases studied with mesh B. .............................................................. 72 Figure 3.17 - Sketch of the system with all components from a lateral and frontal cut. ............................ 75 Figure 3.18 - Radial dimensions of alumina tube, quartz reactor and insulator. ......................................... 77 Figure 3.19 - Temperature profiles at different insulator thermal conductivities. ...................................... 78 Figure 3.20 - Thermal conductivities of different materials and target value. ............................................. 79 Figure 3.21 - Different temperature profiles depending on q values. ......................................................... 80 in Figure 3.22 - Front and lateral section of the modelled system. .................................................................... 81 Figure 3.23 - Top vision of stainless steel tube with different boundary conditions.................................. 81 Figure 3.24 - Comparison of model results for the four different cases. ..................................................... 83 Figure 3.25 - System geometry of external system: probe (orange), insulator (green), air (blue). ............. 85 Figure 3.26 - Temperature profile in the whole system. ................................................................................. 87 Figure 3.27 - Temperature profile in the probe. .............................................................................................. 87 Figure 3.28 - Temperature plot over the central line of air and probe regions. .......................................... 88 Figure 3.29 - Steel supports of the tube. ........................................................................................................... 89 Figure 3.30 - Thermocouple inserted in the welded tube. .............................................................................. 90 8 Figure 3.31 - Heating tape mounted on steel tube (A) and sheet of steel to level out the heat (B). ........ 90 Figure 3.32 - Window in the steel tube for the Raman probe. ...................................................................... 91 Figure 3.33 - Calcium Silicate cap....................................................................................................................... 91 Figure 3.34 – MICROTHERM® MPS microporous insulator. .................................................................... 92 Figure 3.35 - Hole in the insulator for the Raman probe. .............................................................................. 92 Figure 3.36 - Internal part of the insulator: glass fiber is used to maintain the reactor with the same axis of the insulator. ..................................................................................................................................................... 93 Figure 3.37 - Insulator, hosting the steel tube, aligned with the oven. ......................................................... 93 Figure 3.38 - Insulation of the space between oven and microporous insulator. ....................................... 94 Figure 3.39 - Inlet (A) and outlet (B) oven insulations, using calcium silicate and quartz fibre. .............. 94 Figure 3.40 – Final layout of the whole reactor. .............................................................................................. 95 Figure 3.41 - Nitrogen cooling system. ............................................................................................................. 95 Figure 3.42 - Raman probe support structure. ................................................................................................. 96 Figure 3.43 - Comparison between different temperature profiles. .............................................................. 98 Figure 3.44 - Comparison between model and experimental data for the four cases: (A) Tsp oven = 700°C, (B) Tsp oven = 750°C, (C) Tsp oven = 800°C and (D) Tsp oven = 850°C .................................. 99 Figure 3.45 - Temperature profile with drilled oven. .................................................................................... 100 Figure 4.1 - Laboratory rig where all experimental tests were carried out. ................................................ 104 Figure 4.2 - P&ID of the plant. ........................................................................................................................ 105 Figure 4.3 – Generic feed line. .......................................................................................................................... 106 Figure 4.4 - Six-way valve positions: (A) carrier to the column, (B) sample to the column. ................... 108 Figure 4.5 – Thermal conductivity detector. ................................................................................................... 109 Figure 4.6 - CO flow controller calibration. ................................................................................................... 111 2 Figure 4.7 - – Example of a GC analysis. ........................................................................................................ 111 Figure 4.8 - GC calibration of Carbon Monoxide. ........................................................................................ 113 Figure 4.9 - (A, B) Proper and improper vertical alignment of lens and steel tube. (C, D) Proper and improper angular alignment of lens and steel tube. ....................................................................................... 115 Figure 4.10 - Flow diagram illustrating the adopted focusing procedure. .................................................. 116 Figure 4.11 - Raman spectrum of sapphire disk............................................................................................. 117 Figure 4.12 - Raman spectrum of reactor quartz. .......................................................................................... 118 Figure 4.13 - Focusing point (A) and Raman spectrum (B) of the Rh/α-Al2O3 catalyst in room temperature conditions, under N flow. .......................................................................................................... 119 2 Figure 4.14- Comparison of alumina tube Raman spectra record in ex situ Raman spectrometer (green) and in operando reactor (blue). ............................................................................................................................ 121 Figure 4.15 - Raman spectra of the catalyst sample (under N flow) at various temperatures................ 123 2 9 Figure 4.16 - Time resolved Raman spectra during methane pyrolysis at 500°C. ..................................... 124 Figure 4.17 - Time resolved Raman spectra during oxidation in air at 500°C. .......................................... 125 Figure 4.18 - Time resolved Raman spectra during methane pyrolysis at 500°C. 2nd experiment. ......... 126 Figure 4.19 - Conditioning process scheme. ................................................................................................... 128 Figure 4.20 - Raman spectrum of non-conditioned catalyst at 25°C. Spectrum recorded under CPO conditions, after the catalyst was conserved in ambient air conditions. ..................................................... 129 Figure 4.21 - Raman spectra of catalyst during first conditioning run at 300°C. 15‟ passed from one measurement to the other.................................................................................................................................. 130 Figure 4.22 - Raman spectra of catalyst during the first conditioning run. Spectra at 25, 400, 450 and 500°C are reported from bottom to top. ........................................................................................................ 131 Figure 4.23 - - Raman spectra of catalyst during CPO conditioning at 500, 550, 600 and 700°C. ....... 132 Figure 4.24 - Comparison between Raman spectra at 700°C (first run) and 25°C (second run). .......... 133 Figure 4.25 - Comparison between Raman spectra recorded at room temperature. ................................ 134 Figure 4.26 - Comparison between Raman spectra recorded at 300°C. ..................................................... 135 Figure 4.27 - Raman spectra of catalyst during CPO conditioning at 400, 450, 500, 550, 600 and 700°C. ............................................................................................................................................................................... 136 Figure 4.28 - CH conversion in consecutives CPO conditioning runs. .................................................... 137 4 Figure A.1 - Energy level diagram showing the states involved in Raman signals [50]. ........................... 145 Figure A.2 - Potential energy diagram for a harmonic oscillator. ................................................................ 146 Figure A.3 - Harmonic and Morse potential energy curves. ........................................................................ 146 Figure A.4 - Normal vibration modes in H O molecule. ............................................................................. 147 2 Figure A.5 - Relationships among wavenumber, reduced mass and force constant. ............................... 149 Figure A.6 - Mechanisms of various light scattering processes. (a) Rayleigh scattering, (b) Raman scattering, (c) Pre-resonance Raman, (d) Resonance Raman, (e) Fluorescence. ....................................... 150 Figure B.1 - Example of geometry used to generate an OpenFOAM mesh. The geometry was generated with OpenSCAD. ............................................................................................................................................... 153 Figure B.2 - Example of mesh created with snappyHexMesh with all steps from blockMesh to the final mesh. ..................................................................................................................................................................... 154 Figure B.3 - Example of calculation of view factor between surface A1 and A2. .................................... 155 Figure C.1 - Temperature ramp for the alumina calcination. ....................................................................... 157 Figure C.2 - Sketch of the ball mill. ................................................................................................................. 159 Figure C.3 – Ball mill. ......................................................................................................................................... 160 Figure C.4 - Alumina tube covered with Teflon. ........................................................................................... 160 Figure C.5 - Dip coating equipment. ............................................................................................................... 161 Figure C.6 – Dip coating equipment. .............................................................................................................. 161 10

Description:
The objective of this work is the design, development and testing of an operando-Raman reactor, for the simultaneous investigation of catalyst structure and performance under real working conditions. The proposed solution envisages the use of an annular reactor which, compared to existing operando.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.