ebook img

Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials PDF

1164 Pages·2012·30.572 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials

January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims Publishedby PanStanfordPublishingPte.Ltd. PenthouseLevel,SuntecTower3 8TemasekBoulevard Singapore038988 Email:[email protected] Web:www.panstanford.com BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. LaserAblationinLiquids:PrinciplesandApplicationsin thePreparationofNanomaterials Copyright(cid:2)c 2012PanStanfordPublishingPte.Ltd. Allrightsreserved.Thisbook,orpartsthereof,maynotbereproducedinany form or by any means, electronic or mechanical, including photocopying, recordingoranyinformationstorageandretrievalsystemnowknownorto beinvented,withoutwrittenpermissionfromthepublisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not requiredfromthepublisher. ISBN978-981-4310-95-6(Hardcover) ISBN978-981-4241-52-6(eBook) PrintedintheUSA January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims Contents Preface xxi 1 MechanismsofLaser-InducedSelf-Organizationof Nano-andMicrostructuresofSurfaceReliefinAir andinLiquidEnvironment 1 V.I.Emel’yanov 1.1 Introduction 3 1.2 Laser-InducedSolid-StateDefect-Deformational InstabilitiesoftheSurfaceRelief 7 1.2.1 EquationsoftheDDInstabilityofthe IsotropicallyStressedLayerwithMobile Defects 12 1.2.2 TwoMaximaoftheGrowthRateoftheSurface DDGratingsasaFunctionoftheWave Number 16 1.2.3 ThreeDDGratingInteractionsandGeneration ofSurfaceReliefHarmonics 24 1.2.3.1 EquationsofthreeDDgrating interactions 24 1.2.3.2 Generationofthesecondharmonicof theDDgrating 26 1.2.3.3 ThemixingofDDgratingwave vectors 26 1.2.4 DerivationoftheBimodalSizeDistributionof NanoparticlesFormedbyLaserIrradiationin theDDApproach 28 1.2.5 ComparisonofLinearIsotropicDDTheory withExperimentalResults 32 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims vi Contents 1.2.5.1 Laser-inducedformationofa subsurfacedefect-enrichedlayerand scalingoflateralsizesofsurfaceDD nano-andmicrostructures 32 1.2.5.2 Formationofalarge-scalesurface structureinbrassuponmultipulse laserirradiationinwater confinement:thesizeeffect 36 1.2.5.3 Twoscalesoflaser-inducedsurface reliefmodulation 40 1.2.5.4 Bimodalparticlesizedistribution function 44 1.2.5.5 Surfacereliefharmonicsgeneration duetothreeDDgratinginteractions 51 1.2.6 IsotropicDefect-Deformational Kuramoto–SivashinskyEquationforthe SurfaceReliefInstability 56 1.2.6.1 DerivationoftheisotropicDDKS equation 56 1.2.6.2 LinearizationoftheisotropicDDKS equation:comparisonwiththemodal analysis 58 1.2.6.3 Computersimulationsoftheisotropic DDKSequation 60 1.2.7 LinearDDModelofInstabilityofthe AnisotropicallyStressedLayerwith AnisotropicSurfaceDefectDiffusion 73 1.2.7.1 Equationsoftheanisotropiclinear DDmodel 73 1.2.7.2 ThegrowthrateoftheDDgratingin dependenceonitsorientationand wavenumber 75 1.2.7.3 Formationofone-and two-dimensionalDDgratingson surfaceswithlaser-induced anisotropicstress 76 1.2.8 AnisotropicDefect-Deformational Kuramoto–SivashinskyEquation 80 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims Contents vii 1.2.8.1 DerivationoftheanisotropicDDKS equation 80 1.2.8.2 Numericalsolutionoftheanisotropic DDKSequation:formationofDD ripples 81 1.2.8.3 TheDDinterpretationof laser-inducedsubwavelengthripple formation 83 1.2.9 ConclusiontoSection1.2 88 1.3 Laser-InducedMoltenStateHydrodynamicInstability oftheSurfaceRelief 92 1.3.1 OutlineofthePhysicalMechanismof HydrodynamicInstabilityoftheReliefofthe Laser-MeltedSurface 92 1.3.2 HydrodynamicKuramoto–Sivashinsky EquationfortheModulationoftheSurface ReliefoftheMoltenLayer 94 1.3.3 LinearRegimeoftheHDInstabilityofthe MoltenSurfaceRelief:NumericalEstimations 97 1.3.4 NonlinearRegimeoftheHDInstabilityofthe MoltenSurfaceRelief:NumericalSolutionsof theHDKSEquationoftheMoltenSurfaceRelief 98 1.3.5 ComparisonwiththeExperimenton Laser-InducedSurfaceStructureFormationin WaterConfinement 99 1.4 Conclusions 102 2 ComputerModelsofLaserAblationinLiquids 111 LaurentJ.LewisandDannyPerez 2.1 Introduction 112 2.2 BasicsofAblation:Light–MatterInteractions 114 2.3 AblationintheThermalRegime:TheBackstage 116 2.3.1 Thermodynamics 116 2.3.2 ConventionalWisdom:EarlyTheories 118 2.3.3 NewtonRingsoraNewParadigm 118 2.3.4 ComputerModels 119 2.4 ThePhysicsofAblation:TheCaseofaDryTarget 123 2.4.1 TheFemtosecondRegime 123 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims viii Contents 2.4.1.1 Visualanalysis 124 2.4.1.2 Thermodynamictrajectories 126 2.4.1.3 Ablationmechanismsvsdepth 129 2.4.2 PicosecondandNanosecondPulses 130 2.4.3 MolecularSolids 131 2.5 AblationofaWetTarget:TheConfiningRoleof theLiquid 134 2.5.1 BehaviouroftheLiquidFilm 136 2.5.2 SolidTarget 140 2.5.2.1 Solidtargetwettedbyalow-density liquid 142 2.5.2.2 Solidtargetwettedbyahigh-density liquid 144 2.5.2.3 Propertiesoftheplume 146 2.5.3 Discussion 149 2.6 ConclusionsandPerspectives 150 3 ThermodynamicandKineticApproachesofDiamond andRelatedNanomaterialsFormedbyLaserAblation inLiquid 157 C.X.WangandG.W.Yang 3.1 ThermodynamicandKineticFactorsofLaserAblation inLiquid 158 3.2 ThermodynamicsandKineticsofDiamond NanocrystalsUponLaserAblationinLiquid 162 3.2.1 NanothermodynamicNucleationofDiamond NanocrystalsUponLaserAblationinLiquid 162 3.2.2 Graphite–DiamondPhaseTransitionUpon LaserAblationinLiquid 168 3.2.3 StructureTransformationofNanodiamonds UponLaserAblationinLiquid 173 3.2.4 StabilityofNanodiamondsSynthesizedby LaserAblationinLiquid 179 3.2.5 ThermodynamicsofNanodiamonds SynthesizedbyPulsed-LaserAblationinLiquid 183 3.2.6 NucleationandGrowthKineticsof NanocrystalsFormedUponLaserAblationin Liquid 190 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims Contents ix 3.3 NanothermodynamicalNucleationandPhase Transitionofthec-BNNanocrystalFormationUpon LaserAblationinLiquidNanothermodynamical NucleationandPhaseTransitionofthec-BN NanocrystalFormationUponPLIIR 195 4 PreparationofNanoparticlesUsingLaserAblationin Liquids:FundamentalAspectsandEfficientUtilization 207 TakeshiTsuji 4.1 Introduction 208 4.2 FundamentalsofExperimentalSetup 210 4.3 InfluenceofLaserAblationConditionsonthe FormationEfficiencyandSizeofNPsinLAL 214 4.3.1 WavelengthDependence 214 4.3.2 PreparationofNPsUsingFemtosecondPulses 224 4.4 Time-ResolvedObservationsoftheLALProcess 231 4.5 SizeandShapeModificationUsingSLI 241 4.6 CombinationwithElectrophoresisDeposition Techniques 247 4.7 FutureRemarks 257 5 DynamicsofLiquid-PhaseLaserAblation 269 KoichiSasaki 5.1 Introduction 270 5.2 SpectroscopicDiagnosticsofaLiquid-Phase Laser-AblationPlasma 271 5.2.1 ExperimentalMethod 271 5.2.2 OpticalEmissionIntensity 272 5.2.3 OpticalEmissionSpectrum 274 5.2.4 EstimationofPlasmaPressure 276 5.3 DynamicsofCavitationBubble 276 5.3.1 ExperimentalApparatusforShadowgraph Imaging 276 5.3.2 SnapshotsofCavitationBubbles 277 5.3.3 TemporalEvolutionofBubbleSize 279 5.3.4 RemarksontheDynamicsofaCavitation Bubble 281 5.4 GrowthofNanoparticles 281 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims x Contents 5.4.1 ExperimentalApparatusforLaser-Light Scattering 282 5.4.2 PlacefortheGrowthofNanoparticles 282 5.4.3 PartialTransportofNanoparticles 284 5.4.4 StorageofNanoparticles 284 5.4.5 TemporalEvolutionofNanoparticles 285 5.5 PhysicalControlofLiquid-PhaseLaserAblation 287 5.5.1 EffectofPressurizationonaLaser-Ablation Plasma 288 5.5.2 EffectofPressurizationontheDynamicsofa CavitationBubble 289 5.5.3 EffectofWaterTemperatureontheDynamics ofaCavitationBubble 292 5.5.4 EffectofaSupersonicWaveontheDynamicsof aCavitationBubble 293 5.6 Conclusions 295 6 EmissionSpectroscopyofLaserAblationPlumein Liquid 299 TetsuoSakka 6.1 Introduction 300 6.2 Experiments 301 6.2.1 EmissionSpectroscopy 301 6.2.2 EmissionImaging 303 6.2.3 Shadowgraph 304 6.3 EmissionSpectrafromLaserAblationPlumein Liquid 304 6.3.1 DoublePulseExperiments 304 6.3.2 UseofaLongPulse-WidthLaser 305 6.4 Analysis 308 6.4.1 SpectroscopicTemperatureDetermination 308 6.4.2 IntensityAnalysis 310 6.4.3 Self-AbsorptionCorrection 312 6.5 MechanismofOpticalEmission 315 6.5.1 ImagingoftheEmission 316 6.5.2 CavitationBubble 318 6.6 Applications 320 6.7 ConclusionsandOutlook 323 January5,2012 18:29 PSPBook-9inx6in 00-Yang–prelims Contents xi 7 FormationofNanoparticlesUnderLaserAblationof SolidsinLiquids 327 G.A.Shafeev 7.1 Introduction 328 7.2 GeneralSetupofLaserAblationinLiquids 328 7.2.1 ExperimentalTechnique 329 7.2.1.1 Pulseduration 330 7.2.1.2 Laserwavelength 332 7.2.1.3 Repetitionrate 332 7.3 HistoricalReview 333 7.4 LaserAblationofanAgTargetinaLiquid Environment 337 7.5 LaserAblationofanAuTargetinaLiquid Environment 338 7.6 InteractionofNPswithLaserBeam 341 7.6.1 FragmentationofNPsUnderLaserExposure inLiquids 341 7.6.2 Shape-SelectiveFragmentation 342 7.7 FormationofAu–AgAlloyUnderLaserIrradiationof NPs 345 7.8 NPsofCu,Brass,andBronze 352 7.9 InternalSegregationofBrassNPs 354 7.10 Self-InfluenceofaFemtosecondLaserBeam 356 7.11 InfluenceoftheNatureoftheLiquid 358 7.11.1AblationofaTiTarget 358 7.11.2LaserGenerationofAluminumNPs 360 7.11.3AblationofSn 364 7.12 ModelingoftheSizeDistributionFunctionof Laser-GeneratedNPs 369 7.13 InfluenceofIntensityDistributionoftheLaserBeam ontheShapeofNPs 370 7.14 SynthesisofAuNPsbyAblationwithDelayed FemtosecondPulses 375 7.15 InitiationofNuclearReactionsbyLaserExposureof AuNPs 378 7.16 TailoringthePropertiesofAuNPs 388 7.17 ProblemstoBeSolved 390 7.18 Conclusion 391

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.