Anwar Hasan Jarndal Large-Signal Modeling of GaN Device for High Power Amplifier Design This work has been accepted by the faculty of electrical engineering / computer science of the University of Kassel as a thesis for acquiring the academic degree of Doktor der Ingenieurwissenschaften (Dr.-Ing.). Supervisor: Prof. Dr.-Ing G. Kompa Co-Supervisor: Prof. rer. rat. H. Hillmer Commission members: Prof. Dr.-Ing. J. Börcsök Prof. Dr. sc. techn. D. Dahlhaus Defense day: 10th November 2006 The publication was funded by Deutscher Akademischer Auslandsdienst Gedruckt mit Unterstützung des Deutschen Akademischen Auslandsdienstes Bibliographic information published by Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de Zugl.: Kassel, Univ., Diss. 2006 ISBN: 978-3-89958-258-1 URN: urn:nbn:de:0002-2097 © 2007, kassel university press GmbH, Kassel www.upress.uni-kassel.de Printed by: Unidruckerei, University of Kassel Printed in Germany To my father’s soul, my mother, my wife, and my family Acknowledgements Praise to Allah who gave me the ability to finish this research work. I would like to thank the University of Hodeidah, Yemen, and Deutscher Akademischer Austausch Dienst (DAAD), Germany, for their financial support that allowed me to pursue this research. I would also like to thank my supervisor and mentor Prof. Dr.-Ing. G. Kompa for the guidance and the encouragement he offered me throughout my research in the Department of High Frequency Engineering, University of Kassel. I would also like to thank my second examiner Prof. Dr. H. Hillmer for accepting this task, Prof. Dr. J. Börcsök and Prof. Dr. D. Dahlhaus for their acceptance to be members of the examination committee. I would also like to thank my colleagues in the Department of High Frequency Engineering for their friendship and all of their help over the past years. I would like to offer my gratitude to my mother, my wife, my sisters and my brothers for their love and encouragement, which has enabled me to finish this dissertation. Anwar Hasan Jarndal Contents Chapter 1: Introduction 1 References. ………………………………………………. 6 Chapter 2: AlGaN/GaN HEMT Device 10 2.1 Basic HEMT Operation……………………………. 10 2.2 AlGaN/GaN HEMT Material……………………… 12 2.3 AlGaN/GaN Structure……………………………… 14 2.3.1 Polarization Effect in AlGaN/GaN HEMT….. 14 2.3.2 Surface States (Traps)……………………….. 16 2.4 AlGaN/GaN HEMT Technology…………………... 17 2.4.1 Device Fabrication…………………………... 17 2.4.2 Fabrication Related Problems……………….. 19 2.4.2.1 Buffer Traps…………………… 19 2.5 AlGaN/GaN Performance…………………………. 21 2.5.1 IV Characteristics…………………………… 21 2.5.2 RF Characteristics…………………………... 24 References…………………………………………. 26 Chapter 3: Fundamentals of Active Device Modeling 29 3.1 Device Modeling Approaches……………………… 29 3.1.1 Physical Modeling…………………………… 29 3.1.2 Empirical Modeling………………………….. 30 3.2 Bottom-Up Modeling Technique…………………… 32 3.2.1 Quasi-Static FET Large-Signal Modeling……. 32 V 3.2.2 Non-Quasi-Static FET Large-Signal Modeling….. 34 3.2.2.1 Traps Induced Dispersion Modeling... 37 3.2.2.2 Self-Heating Induced Dispersion Modeling………………………. 39 3.3 Device Characterization…………………………… 41 3.3.1 IV Measurements…………………………… 42 3.3.1.1 DC IV Measurements………….. 42 3.3.1.2 Pulsed IV Measurements………. 42 3.3.2 S-Parameter Measurements…………………. 43 3.3.3 Low Frequency Dispersion Measurements…. 44 3.3.4 Large-Signal Measurements. ………………. 44 3.3.4.1 Load-Pull Measurements……… 44 References…………………………………………. 45 Chapter 4: AlGaN/GaN HEMT Small-Signal Modeling 52 4.1 Distributed Small-Signal Equivalent Circuit Model… 52 4.2 Extrinsic Parameter Extraction………………………. 53 4.2.1 Generation of Starting Value of Small-Signal Model Parameters……………………………. 55 4.2.2 Model Parameter Optimization………………. 64 4.3 Intrinsic Parameter Extraction………………………. 67 4.4 Small-Signal Model Verification…………………… 73 4.4.1 S-Parameter Simulation……………………… 73 4.4.2 Physical Validation…………………………... 75 4.5 Small-Signal Model Scaling………………………... 77 References…………………………………………... 82 Chapter 5: AlGaN/GaN HEMT Large-Signal Modeling 84 5.1 Large-Signal Model Equivalent Circuit…………….. 84 V I 5.2 Gate Charge Modeling………………………………. 86 5.3 Gate Current Modeling………………………………. 88 5.4 Drain Current Modeling……………………………… 89 5.4.1 Dispersive Table-Based Drain Current Model… 89 5.4.2 Trapping and Self-Heating Effects…………….. 90 5.4.3 Drain Current Model Fitting Parameter Extraction……………………………………… 92 5.5 Large-Signal Model Implementation…………………. 93 5.6 Simulation and Measurement Results………………… 95 5.6.1 S-Parameter…………………………………….. 95 5.6.2 IV Characteristics………………………………. 97 5.6.3 Signal Waveforms……………………………… 98 5.6.4 Single Tone Input Power Sweep……………….. 98 5.6.5 Two-Tone Input Power Sweep……………….. 99 References……………………………………………. 102 Chapter 6: Conclusion and Future Work 104 VI I List of Figures 2.1 (a) Simplified AlGaAs/GaAs HEMT structure, (b) corresponding band diagram………………………………………………..……………. 10 2.2 (a) Simplified AlGaN/GaN HEMT structure, (b) corresponding band diagram……………………………………………………………… 11 2.3 Electronic properties of AlGaN/GaN HEMT structure……………... 13 2.4 Electric field and sheet charges present (a) due to only spontaneous polarization in GaN and AlGaN crystals; and (b) due to only piezoelectric polarization in a AlGaN layer……………...………….. 14 2.5 Combined piezoelectric and spontaneous polarization field in AlGaN/GaN structure……………………………………………….. 15 2.6 AlGaN/GaN HEMT structure showing polarization induced, surface states, and 2DEG charges…………………………………………… 16 2.7 Epitaxial layer structure of the AlGaN/GaN HEMT [13]…………… 18 2.8 (a) Bad pinch-off DC characteristics, measured in house, of a 8x125 µm gate width AlGaN/GaN HEMT (wafer no. 713-2) related to the buffer leakage current, (b) kink effect in DC characteristics, measured in FBH, of a 8x125 µm gate width AlGaN/GaN HEMT (wafer no. 713-2) related to the buffer traps……………………………………………………. 20 VI II
Description: