ebook img

Large-scale functional MRI analysis to accumulate knowledge on brain functions. PDF

153 Pages·2015·21.63 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large-scale functional MRI analysis to accumulate knowledge on brain functions.

Université Paris-Sud Doctoral school 427 : Computer Science Parietal Team - Inria Saclay Large-scale functional MRI analysis to accumulate knowledge on brain functions. Yannick Schwartz AdissertationsubmittedforthedegreeofDoctorofScience, inthesubjectofComputerScience. Defendedpubliclythe21thofApril2015. Advisors: DrJean-BaptistePoline UniversityCaliforniaBerkeley,USA DrBertrandThirion ParietalTeam-InriaSaclay,France Reviewers: DrFinnÅrupNielsen TechnicalUniversityofDenmark,Denmark PrTorWager UniversityofColorado,USA Examiners: DrYvesBurnod FacultédemédecinePierreetMarieCurie,France PrAlainDenise UniversitéParis-Sud,France PrSimonEickhoff Heinrich-HeineUniversity,Germany DrJean-BaptistePoline UniversityCaliforniaBerkeley,USA DrGaëlVaroquaux ParietalTeam-InriaSaclay,France Université Paris-Sud Ecole Doctorale 427 : informatiqe Paris-Sud Éqipe Parietal - Inria Saclay Discipline : informatiqe Thèse de doctorat Analyse à grande échelle d’IRM fonctionnelle pour accumuler la connaissance sur les fonctions cérébrales. Yannick Schwartz Présentée et soutenue publiquement le 21 avril 2015. Directeurdethèse: DrJean-BaptistePoline UniversityCaliforniaBerkeley,USA Co-directeurdethèse: DrBertrandThirion ParietalTeam-InriaSaclay,France Rapporteurs: DrFinnÅrupNielsen TechnicalUniversityofDenmark,Danemark PrTorWager UniversityofColorado,USA Examinateurs: DrYvesBurnod FacultédemédecinePierreetMarieCurie,France PrAlainDenise UniversitéParis-Sud,France PrSimonEickhoff Heinrich-HeineUniversity,Allemagne DrJean-BaptistePoline UniversityCaliforniaBerkeley,USA DrGaëlVaroquaux ParietalTeam-InriaSaclay,France Abstract Howcanweaccumulateknowledgeonbrainfunctions?Howcanwelever- ageyearsofresearchinfunctionalMRItoanalysefiner-grainedpsycholog- icalconstructs,andbuildacomprehensivemodelofthebrain?Researchers usuallyrelyonsinglestudiestodelineatebrainregionsrecruitedbymen- tal processes. They relate their findings to previous works in an informal way by definingregions of interest from the literature. Meta-analysis ap- proachesprovideamoreprincipledwaytobuildupontheliterature. Thisthesisinvestigatesthreewaystoassembleknowledgeusingactiva- tion maps from a large amount of studies. First, we present an approach thatusesjointlytwosimilarfMRIexperiments,tobetterconditionananal- ysisfromastatisticalstandpoint.Weshowthatitisavaluabledata-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledgeonalargescale. Becauseofthedifficultytoassociatemultiple studies,weresorttousingasingledatasetsamplingalargenumberofstim- uliforoursecondcontribution.Thismethodestimatesfunctionalnetworks associatedwithfunctionalprofiles, wherethefunctionalnetworksarein- teractingbrainregionsandthefunctionalprofilesareaweightedsetofcog- nitivedescriptors.Thisworksuccessfullyyieldsknownbrainnetworksand automaticallyassociatesmeaningfuldescriptions. Itslimitationslieinthe unsupervisednatureofthismethod,whichismoredifficulttovalidate,and theuseofasingledataset.Ithoweverbringsthenotionofcognitivelabels, which is central to our last contribution. Our last contribution presents a methodthatlearnsfunctionalatlasesbycombiningseveraldatasets.[Hen- son2006]showsthatforwardinference,i.e.theprobabilityofanactivation givenacognitiveprocess,isoftennotsufficienttoconcludeontheengage- mentofbrainregionsforacognitiveprocess. Conversely,[Poldrack2006] describesreverseinferenceastheprobabilityofacognitiveprocessgiven anactivation,butwarnsofalogicalfallacyinconcludingonsuchinference fromevokedactivity.Avoidingthisissuerequirestoperformreverseinfer- encewithalargecoverageofthecognitivespace.Wepresentaframework thatusesa"meta-design"todescribemanydifferenttaskswithacommon vocabulary, and use forward and reverse inference in conjunction to out- linefunctionalnetworksthatareconsistentlyrepresentedacrossthestud- ies.Weuseapredictivemodelforreverseinference,andperformprediction onunseenstudiestoguaranteethatwedonotlearnstudies’idiosyncrasies. This final contribution permits to learn functional atlases, i.e. functional networksassociatedwithacognitiveconcept. 4 We explored different possibilities to jointly analyse multiple fMRI ex- periments. Wehavefoundthatoneofthemainchallengesistobeableto relatetheexperimentswithoneanother.Asasolution,weproposeacom- monvocabularytodescribethetasks. [Henson2006]advocatestheuseof forward and reverse inference in conjunction to associate cognitive func- tionstobrainregions,whichisonlypossibleinthecontextofalargescale analysistoovercomethelimitationsofreverseinference. Thisframingof theproblemthereforemakesitpossibletoestablishalargestatisticalmodel of the brain, and accumulate knowledge across functional neuroimaging studies. Acknowledgements IfirstwouldliketoexpressmygratitudetomytwoadvisorsJean-Baptiste PolineandBertrandThirion,whogavemethisgreatopportunityandhelped mealong myPhD withtheir supervision. Ialso wouldlike tothank Gaël Varoquaux,whowasformenotonlyashadowadvisor,butalsotheperfect spoonforourvarioustravels. Thankyouforthisamazingexperience,and forintroducingmetotherealmofscience. IamalsogratefultoFinnÅrup Nielsen and Tor Wager, for taking time to review my thesis and all their insightful comments, as well as Yves Burnod, Simon Eickhoff, and Alain Deniseforbeingpartofmydefensecommittee. IwouldliketogivespecialthankstoalltheParietalteam,bothpresent and past members: you are the reason why this team is so uniquely and trollinglydisruptive.SobigthankstoVincentMichel(a.k.a.NickelMitchell) for showing me that technical skills were optional to do a PhD, and Alan Tucholka (a.k.a. the Graou) for teaching me the relational skills I needed inaprofessionalenvironment,CéciliaDamonwhowaslikeabigsisterto me, Alexandre Gramfort (malade), Pierre "Commissaire" Fillard, Philippe "tchoutchou" Ciuciu, Fabian "Chicken" Pedregosa, Viviana "No no no" Si- less,VirgileFritsch,petaflopicBenoîtDaMota,MichaelEickenberg,Olivier Grisel,LoïcEstève,AndrésHoyosIdrobo,AlexandreAbraham,Konstantin Shmelkov, Danilo "triple that awsome" Bzdok, Aina Frau, Solveig Badillo, Salma Bougacha, Mehdi Rahim, Nicolas Chauffert, Ana Luísa Pinho, and KamalakarReddy. SpecialthankstoRégineBricquet,BarbaraMoulin,and MaikeGilliotwhosavedmefrommanyadministrativehurdles. I have spent a bit more than seven and a half years at Neurospin, and hadthechancetomeetmanypeoplethatmadethisexperiencerichbothon theprofessionalandpersonal levels. Itmayjustlooklikealong enumer- ation of names but I really enjoyed working and/or spending (too much) time around a coffee with each and every single one of you. Thanks to all the IMAGEN team, in particular Benjamin Thyreau, who taught me right from wrong, Alexis Barbot, Fanny Gollier-Briant, and Eric Artiges. I would also like to acknowledge my adoptive parents Edouard Duches- nayandDimitriPapadopoulos,aswellasmycollaboratorsfromtheother teams:JulienLefèvre,DavidGermanaud,ClaraFischer,PaulineRoca,Edith LeFloch,SoizicLaguitton,MatthieuPerrot,PamelaGuevara,UrielleTho- prakarn,GrégoryOperto,MathieuDubois,YannCointepas,DenisRivière, AlexisRoche,LaurentRisser,NicolasSouedet,Jean-FrançoisMangin,Vin- centFrouin,MélanieStrauss,DenisEngemann,MurielleFabre,LauraDu- pas,ElodieCauvet,CatherineWacongne,MarieAmalric,ValentinaBorghe- 6 sani,ChristophePallier,LucieCharles,AnneKozem,andAurélienMassire. AndIalsowouldliketocongratulateBaptisteGauthierforhisPhD. Thanksalsotoallmyfriendswhoremindedmethatthereismoretolife than academic research: my forever roommates Colin and Rémi, Ahmed, Pieb, Piouf, Aurélien, Ienien, Chris, and Soubouzou San. Finally special thankstoallmyfamily,inparticulartomyparents,andCédricandChris- tel for their continued support. Last but not least, thanks to my beloved Rebecca,whowhippedmewhenIneeded,andbelievedinmewhenIcould not. Contents 17 I State of the art: a brief introduction to neuroimaging 19 1 From brain images to the study of the mind 1.1 Frombrainlesionstofunctionalimaging 20 1.2 BOLDFunctionalMRI 20 1.3 Mappingmentalprocessestothebrain 22 1.4 Conclusion 25 27 2 Tools for neuroimaging data modeling 2.1 Statisticalinference 28 2.2 StatisticallearningforfMRI 32 2.3 Quantitativemeta-analyses 39 2.4 Conclusion 42 47 II Contributions: from an image database to learning brain functions 49 3 Scaling up from individual studies 3.1 Findingthedata 50 3.2 Fromdiversedatasourcestocuratedbrainmaps 51 3.3 Conlusion 57 65 4 Functional localization by meta-analysis 4.1 Improvingaccuracyandpowerwithtransferlearningusingameta-analyticdatabase 69 4.2 OnspatialselectivityandpredictionacrossconditionswithfMRI 75 4.3 Conlusion 80 8 83 5 Learning functional networks 5.1 Introduction 84 5.2 Amulti-subjectsparse-codingmodelofbrainresponse 85 5.3 EfficientlearningofRFX-structureddictionaries 87 5.4 Resultsonsimulateddata 89 5.5 LearningacognitivebrainatlasfromfMRI 90 5.6 Conlusion 93 97 6 Learning functional atlases 6.1 Annotatingbrainmaps 98 6.2 Inferringconcept-specificnetworks 99 6.3 Functionalatlases 108 6.4 Conclusion 111 117 A Appendix: datasets A.1 BalloonAnalogRisk-takingTask(ds000001) 117 A.2 Classificationlearning(ds000002) 118 A.3 Rhymejudgment(ds000003) 119 A.4 Mixed-gamblestask(ds000005) 120 A.5 Living-nonlivingdecisionwithplainormirror-reversedtext(ds000006) 121 A.6 Stop-signaltaskwithspoken&manualresponses(ds000007) 122 A.7 Stop-signaltaskwithunconditionalandconditionalstopping(ds000008) 123 A.8 Thegeneralityofself-control(ds000009) 124 A.9 Classificationlearningandtone-counting(ds000011) 125 A.10Classificationlearningandstop-signal(1yeartest-retest)(ds000017) 126 A.11Cross-languagerepetitionpriming(ds000051) 127 A.12Classificationlearningandreversal(ds000052) 128 A.13Simontask(ds000101) 129 A.14Flankertask(event-related)(ds000102) 130 A.15Visualobjectrecognition(ds000105) 131 A.16Wordandobjectprocessing(ds000107) 132 A.17Prefrontal-SubcorticalPathwaysMediatingSuccessfulEmotionRegulation(ds000108) 133 A.18Falsebelieftask(ds000109) 134 A.19Incidentalencodingtask(PosnerCueingParadigm)(ds000110) 135

Description:
A.31 A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: widespread experimental procedure to localize brain functions with fMRI, Montreal Neurological Institute (MNI) [7] brain spaces. typical case is that of early-stage clinical trials, for which the group size is.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.