Research Collection Doctoral Thesis Large-eddy simulation of transition and turbulence in wall- bounded shear flow Author(s): Schlatter, Philipp Christian Publication Date: 2005 Permanent Link: https://doi.org/10.3929/ethz-a-004945776 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library LARGE-EDDY SIMULATION OF TRANSITION AND TURBULENCE IN WALL-BOUNDED SHEAR FLOW Philipp Schlatter Dissertation ETH No. 16000 Visualisation taken from a large-eddy simulation (LES) of spatial K-type transition in plane channel flow. Shown are isosurfaces of the negative-λ 2 vortex-identification criterion. The two-dimensional wave disturbances (yellow isosurfaces) at the inlet break down to turbulence through the formation of Λ-vortices and hairpin vortices (red isosurfaces). A turbu- lent spot (white) is formed which evolves into fully developed turbulent channel flow further downstream (green). The colored bottom wall shows the skin friction, the rear side wall displays the spanwise vorticity in the valley plane. Diss. ETH No. 16000 LARGE-EDDY SIMULATION OF TRANSITION AND TURBULENCE IN WALL-BOUNDED SHEAR FLOW A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ¨ ZURICH for the degree of Doctor of Technical Sciences presented by Philipp Christian Schlatter Dipl. Ing. ETH (Swiss Federal Institute of Technology Zu¨rich) born on May 21, 1975 citizen of Zu¨rich (ZH) accepted on the recommendation of Prof. Dr. L. Kleiser, examiner Prof. Dr. N. D. Sandham, co-examiner 2005 Abstract Large-eddy simulations (LES) of transitional and turbulent wall- bounded incompressible flow have been performed. A special focus has been on the reliable and efficient modelling of laminar-turbulent transition in plane channel flow at low resolutions, for which several subgrid-scale (SGS) models have been evaluated, including the approxi- mate deconvolution model (ADM) and related approaches, classical and high-pass filtered (HPF) eddy-viscosity models, and dynamic models. The simulations have been performed in both the temporal and spatial transition framework. The results show that a direct modelling involving a relaxation reg- ularisation (ADM-RT model) provides the most accurate results for both transitional quantities and turbulent statistics. By use of three- dimensional visualisation of instantaneous flow structures it is inves- tigated how well the SGS models on coarse grids are able to predict the physically relevant mechanisms at successive stages of transition: Λ-vortices, rollup of shear layers, and hairpin vortices. The results show that the ADM-RT model predicts similar transitional structures as present in fully resolved direct numerical simulation (DNS) data, how- ever using less than one percent of the numerical resolution of the latter. Other SGS models are not capable of predicting these physical structures at the chosen coarse resolution. Additionally, the different SGS models have been examined in homo- geneous isotropic turbulence. The models provide an accurate prediction of the energy and dissipation spectra even for high Reynolds numbers. A Fourier method based on a windowing approach to prescribe non- periodic inflow and outflow boundary conditions has been formulated and evaluated. Test cases involving a travelling vortex core and a spa- tially developing jet have shown very good outflow damping properties. The spectral accuracy of the underlying numerical scheme is retained. The windowing approach has been compared to the well-established fringe method. Kurzfassung Large-Eddy-Simulationen (LES) von transitionellen und turbulenten wandbegrenzten inkompressiblen Stro¨mungen wurden durchgefu¨hrt. Spezielle Beachtung fand dabei die verl¨assliche und effiziente Model- lierung der laminar-turbulenten Transition in ebener Kanalstro¨mung bei geringer Auflo¨sung. Es wurden verschiedene Turbulenzmodelle untersucht, insbesondere das “Approximate Deconvolution Model” (ADM) und verwandte Ansa¨tze, klassische und hochpassgefilterte Wirbelviskosita¨tsmodelle (eddy-viscosity models), einschliesslich des bekannten dynamischen Modells. Die Simulationen wurden sowohl in ra¨umlicher als auch zeitlicher Betrachtungsweise der Transition durchgefu¨hrt. Die Resultate zeigen, dass eine direkte Modellierung basierend auf einer Regularisierung mittels eines Relaxationsterms die genauesten Re- sultate sowohl fu¨r transitionelle Gro¨ssen als auch fu¨r turbulente Statis- tiken liefert. Dreidimensionale Visualisierungen zeigen ausserdem, ob und wie die verschiedenen Modelle die charakteristischen Stufen der Transition wiedergeben: Λ-Wirbel, Aufrollen der Scherschichten und Haarnadelwirbel. Die Resultate zeigen weiter, dass das ADM-RT-Modell sehr ¨ahnliche Strukturen wie die vollaufgelo¨sten Daten der direkten nu- merischen Simulation (DNS) vorhersagt, obwohl weniger als ein Prozent der Gitterauflo¨sung verwendet wurde. Andere Modelle waren hingegen bei der gew¨ahlten niedrigen Auflo¨sung nicht in der Lage, diese Struk- turen vorherzusagen. Zusa¨tzlich wurden die verschiedenen Modelle auch in homogener isotroper Turbulenz untersucht. Es zeigte sich, dass sie eine genaue Voraussage der Energie- als auch der Dissipationsspektren auch fu¨r hohe Reynoldszahlen erlauben. Eine Fouriermethode basierend auf einem Windowing-Ansatz wurde zur Aufpra¨gung von Ein- und Ausflussbedingungen formuliert und be- wertet. Testf¨alle mit einem Wirbel und einem sich ra¨umlich entwi- ckelnden Freistrahl (Jet) zeigten gute D¨ampfungseigenschaften am Aus- flussrand. Die spektrale Genauigkeit des zugrundeliegenden numerischen Verfahrens bleibt erhalten. Die Windowing-Methode wurde verglichen mit der etablierten Fringe-Methode. Acknowledgements I would like to thank Prof. Leonhard Kleiser for supervising my research at the Institute of Fluid Dynamics (IFD) of ETH Zu¨rich. His constant support, deep understanding and interest in the fields of numerics, tran- sition, and turbulence were of indispensable value and help. He also made it possible for me to attend a number of international conferences, an experience I do not want to miss. I also like to thank Prof. Neil Sandham (University of Southhampton) for agreeing to be co-examiner for my PhD thesis. I am particularly grateful to Dr. Steffen Stolz (ETH) for his tireless support and enormous patience in explaining me everything necessary about numerics, turbulence, and large-eddy simulation, and for correct- ing and improving my reports. Without his experienced advice and constant interest this work could certainly not have been accomplished. The support of Prof. Nikolaus Adams at the beginning of this re- search project is also thankfully acknowledged. Furthermore, I am indepted to Prof. Dan Henningson (KTH Stock- holm) for giving me the possibility to spend a short period in Sweden to continue our collaboration on bypass transition. In particular, I would like to thank Dr. Luca Brandt (KTH) for alwayshelping me in case of any questions about transition or stability. I also like to thank Dr. Benjamin Rembold (ETH) and Mr. Jo¨rg Ziefle (ETH) for stimulating discussions on, but not only on, fluid dynamics. Dr. Thorsten Bosse is acknowl- edged to bear me during the three years as office mate at the Institute. I also would like to thank Mr. Hans Peter Caprez (ETH) for providing a reliable computer environment and for satisfying all my special requests. I would also like to thank my friends for their support during the good and also during the busy times of my PhD project. This work was supported by the Swiss National Science Foundation (SNF) and the Swiss National Supercomputing Centre (CSCS), Manno. Calculations have been performed at CSCS. Zu¨rich, March 2005 Philipp Schlatter
Description: