ebook img

Large-Angle Beamstrahlung: Simulation And Diagnostics PDF

145 Pages·2014·4.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Large-Angle Beamstrahlung: Simulation And Diagnostics

Wayne State University Wayne State University Dissertations 1-1-2014 Large-Angle Beamstrahlung: Simulation And Diagnostics Ryan Stephen Gillard Wayne State University, Follow this and additional works at:http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Gillard, Ryan Stephen, "Large-Angle Beamstrahlung: Simulation And Diagnostics" (2014).Wayne State University Dissertations.Paper 883. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. LARGE-ANGLE BEAMSTRAHLUNG: SIMULATION AND DIAGNOSTICS by RYAN S. GILLARD DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2014 MAJOR: PHYSICS Approved by: ______________________________ Advisor Date ______________________________ ______________________________ ______________________________ ______________________________ ACKNOWLEDGEMENTS I would like to thank my advisor Professor Giovanni Bonvicini for helping me in all of my research over the last four years and with my dissertation editing. I'd also like to thank my colleague and friend Hussein Farhat who worked side by side with me for much of this research. Additionally, a big thank you to all of my family and friends for their love and support throughout this whole process. Lastly, I'd like to thank my wife Ann for everything she has done for me. ii TABLE OF CONTENTS Acknowledgements .................................................................................................................................... ii List of Tables ............................................................................................................................................... v List of Figures ............................................................................................................................................ vi Chapter 1 : Introduction ............................................................................................................................. 1 1.1 The Standard Model ...................................................................................................................... 1 1.2 Fundamental Particles ................................................................................................................... 2 1.2.1 Fermions ............................................................................................................................... 3 1.2.2 Bosons ................................................................................................................................... 4 1.3 Symmetries ................................................................................................................................... 5 1.4 Accelerators and Colliders ............................................................................................................ 7 1.4.1 Accelerator Physics ............................................................................................................. 10 1.5 B-Factories .................................................................................................................................. 20 Chapter 2 : SuperKEKB and the Belle II Experiment ......................................................................... 24 2.1 KEKB, SuperKEKB, and Belle II ............................................................................................... 24 2.2 Luminosity Optimization ............................................................................................................ 31 2.3 Beam Diagnostics ....................................................................................................................... 36 2.4 Beamstrahlung ............................................................................................................................ 38 Chapter 3 : Beamstrahlung Simulation and Modeling ........................................................................ 43 3.1 Total Power ................................................................................................................................. 43 3.1.1 Only Using Crossing Angle ................................................................................................ 43 3.1.2 Crossing Angle with Beam Tilt .......................................................................................... 59 3.2 Angular Spectral Distribution ..................................................................................................... 61 3.3 Results ......................................................................................................................................... 63 Chapter 4 : Optics Box ............................................................................................................................ 66 4.1 Piping Path and Elbows .............................................................................................................. 66 4.2 Photomultiplier Tubes ................................................................................................................. 70 4.2.1 PMT Plateaus ...................................................................................................................... 73 4.2.2 PMT Spectral Response ...................................................................................................... 77 4.2.3 PMT Characterization ......................................................................................................... 79 4.3 Grating Calculations ................................................................................................................... 80 4.4 Laser Testing with First Optics Box ........................................................................................... 84 iii 4.5 Conveyor Belt Motor Controls ................................................................................................... 87 4.6 Mirror Mount Simulation ............................................................................................................ 89 4.7 Optics Testing ............................................................................................................................. 91 4.8 Mirror/Grating Angles Simulation .............................................................................................. 95 4.9 Prism-Lens Testing ................................................................................................................... 102 4.10 Prism-Lens Transmission Efficiencies ...................................................................................... 113 4.11 Full Optical Path Simulation and Efficiencies ......................................................................... 116 Chapter 5 : Conclusion .......................................................................................................................... 132 References .............................................................................................................................................. 133 Abstract .................................................................................................................................................... 135 Autobiographical Statement ................................................................................................................. 136 iv LIST OF TABLES Table 1.1: Symmetries, Invariances, and Conserved Quantities .................................................... 6 Table 2.1: SuperKEKB Machine Parameters ............................................................................... 28 Table 2.2: Beamstrahlung Detector Parameters............................................................................ 38 Table 3.1: Beamstrahlung Calculation Results ............................................................................. 64 Table 4.1: Solutions for Parallel Polarization ............................................................................. 100 Table 4.2: Solutions for Perpendicular Polarization ................................................................... 101 v LIST OF FIGURES Figure 1.1: The Standard Model of Elementary Particles ............................................................... 2 Figure 1.2: Interactions of the Standard Model .............................................................................. 5 Figure 1.3: Fermilab Fixed Target Collider .................................................................................... 8 Figure 1.4: KEKB Ring Collider .................................................................................................... 9 Figure 1.5: Linac at KEKB ........................................................................................................... 11 Figure 1.6: Frenet-Serret Coordinate System ............................................................................... 14 Figure 1.7: Sextupole Magnet ....................................................................................................... 15 Figure 1.8: Upsilon System Resonances ....................................................................................... 21 Figure 1.9: CP Violation Discovered at KEKB and PEP-II ......................................................... 22 Figure 1.10: Rho and Eta Parameters for CKM Matrix ................................................................ 22 Figure 1.11: Full Reconstruction Method ..................................................................................... 23 Figure 2.1: Aerial View of KEKB ................................................................................................ 24 Figure 2.2: The New and Improved SuperKEKB ......................................................................... 25 Figure 2.3: Upgraded Beam Pipe .................................................................................................. 26 Figure 2.4: Upgrading Beam Pipe Magnets .................................................................................. 27 Figure 2.5: SuperKEKB's Interaction Region ............................................................................... 27 Figure 2.6: The Belle Detector...................................................................................................... 29 Figure 2.7: The Belle II Detector .................................................................................................. 30 Figure 2.8: Our Electron-positron Beams Crossing, KEKB on Left, SuperKEKB on Right ....... 31 Figure 2.9: RMS Beam Widths ..................................................................................................... 33 Figure 2.10: Hourglass Effect ....................................................................................................... 36 Figure 2.11: Beam Interaction Pictures for the Collinear Case in the x-y Representation ........... 37 vi Figure 2.12: Normalized Transverse Power Beamstrahlung Diagrams ........................................ 42 Figure 3.1: Asymmetries vs. Waste Parameter ............................................................................. 65 Figure 4.1: Beam Pipe Viewports ................................................................................................. 67 Figure 4.2: Primary Elbow Schematic .......................................................................................... 68 Figure 4.3: Full Optical Path ......................................................................................................... 69 Figure 4.4: Inside a Photomultiplier Tube .................................................................................... 71 Figure 4.5: Dark Experimental Enclosure .................................................................................... 73 Figure 4.6: Electronics Setup ........................................................................................................ 74 Figure 4.7: Counts vs. Voltage for Multiple Threshold Voltages ................................................. 76 Figure 4.8: Count Ratios vs. High Voltages for Different PMTs ................................................. 78 Figure 4.9: PMT Characterization 4x4 Matrix ............................................................................. 79 Figure 4.10: Reflective Ruled Grating .......................................................................................... 81 Figure 4.11: Diagram of Light at Grating Surface ........................................................................ 83 Figure 4.12: Front Face of Optics Box with Both Entry Ports ..................................................... 85 Figure 4.13: Inside of Optics Box ................................................................................................. 86 Figure 4.14: First Completed Optics Box ..................................................................................... 87 Figure 4.15: Conveyor Belt........................................................................................................... 88 Figure 4.16: Mirror Mount ............................................................................................................ 89 Figure 4.17: Experimental Setup to Test Optical Elements with Unpolarized Light ................... 92 Figure 4.18: Experimental Setup to Test Optical Elements with Polarized Light ........................ 93 Figure 4.19: Light Paths for Both Polarizations ........................................................................... 95 Figure 4.20: Incoming and Outgoing Angles for Mirrors and Grating ........................................ 97 Figure 4.21: A Solution of the 9 Parameters for Both Polarizations .......................................... 102 vii Figure 4.22: Prism-lens Arrangement and Mount ...................................................................... 103 Figure 4.23: Light that is Positive and Below the Normal ......................................................... 105 Figure 4.24: Light that is Negative and Below the Normal ........................................................ 110 Figure 4.25: Light that is Negative and Above the Normal ........................................................ 111 Figure 4.26: Electric Field Perpendicular to the Plane of Incidence .......................................... 113 Figure 4.27: Electric Field Parallel to the Plane of Incidence .................................................... 115 Figure 4.28: Mirror Efficiencies ................................................................................................. 117 Figure 4.29: Wollaston Prism Beam Deviation .......................................................................... 118 Figure 4.30: Wollaston Prism and Wollaston Prism with Mirrors Efficiencies ......................... 119 Figure 4.31: Grating Efficiencies ................................................................................................ 120 Figure 4.32: Efficiencies After the Grating for Both Polarizations ............................................ 121 Figure 4.33: Positive Angle with Flipped Prism ......................................................................... 122 Figure 4.34: Negative Angle with Flipped Prism ....................................................................... 123 Figure 4.35: Negative Angle with Non-Flipped Prism ............................................................... 124 Figure 4.36: Prism-Lens Acceptance for Both Polarizations...................................................... 125 Figure 4.37: Prism-Lens Efficiencies for Parallel Polarization .................................................. 126 Figure 4.38: Prism-Lens Efficiencies for Perpendicular Polarization ........................................ 127 Figure 4.39: Prism-Lens Efficiencies for Both Polarizations ..................................................... 128 Figure 4.40: PMT Efficiencies .................................................................................................... 129 Figure 4.41: Full Path Efficiencies for Both Polarizations ......................................................... 130 Figure 4.42: Optics Box Full Light Path ..................................................................................... 131 viii 1 Chapter 1 : Introduction 1.1 The Standard Model Currently we understand the Universe as having four fundamental forces that control everything that happens. There is the gravitational force, the electromagnetic force, the weak force, and the strong force. The Standard Model is a quantum field theory concerning elementary particles and their interactions which together comprise the latter three forces. Work is being done to reconcile the Standard Model with our current theory of gravity, but that will not be covered here. Most of the Standard Model was conceptualized and tested for the last half of the 20th century. It began in the 1960s with the quark model [1], their mixing, and a model that combined the electromagnetic and weak forces into something called the electroweak force which uses an SU(2) X U(1) gauge symmetry model [2][3][4]. This model had two generations of quarks and leptons and their force carrier particles called bosons which will be discussed in the next section. In the 1970s Quantum Chromodynamics was formulated as an SU(3) gauge symmetry theory [5][6] and later the model was adapted to have a third generation of fermions from discovery of the bottom quark and lepton. It wasn’t until the 1990s that the last quark that we know of so far was discovered, the top quark. The neutrino also was observed as well as CP-violating observations for mesons that contain a bottom quark [7]. The very last prediction of the Standard Model to be observed was that of the Higgs boson which was first observed in 2012. This particle is supposedly responsible for why some particles have mass.

Description:
Wayne State University Dissertations Follow this and additional works at: http://digitalcommons.wayne.edu/ throughout this whole process. Figure 4.21: A Solution of the 9 Parameters for Both Polarizations . geometry of the system and are mathematically represented as continuous or smooth
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.