ebook img

Landscape Function and Disturbance in Arctic Tundra PDF

446 Pages·1996·12.01 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Landscape Function and Disturbance in Arctic Tundra

Ecological Studies, Vol. 120 Analysis and Synthesis Edited by G. Heldmaier, Marburg, FRG o. L. Lange, Wiirzburg, FRG H. A. Mooney, Stanford, USA U. Sommer, Kiel, FRG Ecological Studies Vo lumes published since 1990 are listed at the end of this book. Springer-Verlag Berlin Heidelberg GmbH James F. Reynolds John D. Tenhunen (Eds.) Landscape Function and Disturbance in Arctic Tundra With 109 Figures, 11 in color and 47 Tables Springer Professor Dr. JAMES F. REYNOLDS Duke University Department of Botany Phytotron Building Box 90340 Durham, NC 27708 USA Professor Dr. JOHN D. TENHUNEN Universitat Bayreuth Lehrstuhl fur Pftanzenokologie II Bayreuth Institute for Terrestrial Ecosystem Research (BITOK) D-9S440 Bayreuth Germany ISBN 978-3-662-01147-8 ISBN 978-3-662-01145-4 (eBook) DOI 10.1007/978-3-662-01145-4 Library of Congress Cataloging-in-Publication Data Landscape function and disturbance in arctic tundra / james F. Reynolds, john D. Tenhunen (eds.). p. cm. - (Ecological studies: v. 120) Includes bibliographical references and index. ISBN 978-3-662-01 147-8 1. Tundra ecology-Alaska-North Slope. 2. Landscape ecology-Alaska-North Slope. 3. Man-Influence on nature-Alaska-North Slope. 4. Tundra ecology-Arctic regions-Math ematical models. 5. Landscape ecology-Arctic regions-Mathematical models. 6. Man-Influ ence on nature-Arctic regions-Mathematical models. I. Reynolds. james F., 1946- , II. Tenhunen, john D., 1946- . III. Series. QHI05.A4L36 1996 574.5'2644'097987-dc20 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically of translation, reprinting reuse of illustrations, recittation, broadcasting, reproduc tion on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1996 Originally published by Springer-Verlag Berlin Heidelberg in 1996 Softcover reprint of the hardcover 1st edition 1996 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Best -set Typesetter Ltd., Hong Kong SPIN 1008797331/3137-5432 10-Printed on acid-free paper Foreword The plants dominating arctic tundra differ in a fundamental way from almost all other plants on earth. They can carry on metabolic and reproductive proc esses during the short, cold growing seasons of the far North at air and soil temperatures only slightly above or even below oDe. These cold-adapted plants are mostly herbaceous perennials or dwarf shrubs that form a mosaic of com munities that are subject to large fluctuations in their physical environment, both atmospheric and edaphic. These once pristine and relatively isolated ecosystems are now subject to considerable disturbance, due mostly to in creasing human populations and their use of off-road vehicles and industrial equipment. Arctic tundra is underlain with permafrost, which is as deep as 600 m in places. It has been permanently frozen for thousands of years. Embedded in it are ice wedges and lenses in polygonal patterns that characterize much of the tundra. The permafrost is fundamental to arctic tundra ecosystems-it is the "glue" that holds these ecosystems together. During the short summers, the "active" soil layer above the permafrast table thaws briefly to depths of ca. 20-75 cm and allows root penetration, growth, and nutrient uptake by the tundra vegetation. Without the complementary interactions between permafrost and tundra vegetation, thermokarst, or melting of the ground ice followed by erosion and massive disturbance, would result in transport of the materials sequestered in these ecosystems via the streams to the ocean. Since more than 25% of the earth's soil carbon is stored in arctic and subarctic permafrost soils, irreversible thermokarsting would release large amounts of carbon dioxide and methane into the atmosphere. Such posi tive feedback to the atmosphere would stimulate additional temperature increase, resulting in further loss of ecosystem stability. The release of nutrients that have been frozen and dormant for so long in upland tundra soils would stimulate production in river and lake ecosystems downstream, where nutrients have been limiting for centuries or even millennia. If upland ecosystems begin to disappear with the thermokarst, as happened within only 11 years to the Voth Tundra near Barrow, we would face a situation of considerable overall resource loss and environmental impact. If the insulation to permafrost provided by tundra vegetation is damaged or de stroyed by any disturbance, the underlying permafrost is doomed, as is the tundra. VI Foreword This volume, which presents research from the US Department of Energy's R4D project on disturbance in arctic ecosystems, is a welcome and thorough contribution to arctic science. It clearly lays out many of the linkages control ling ecosystem development that are shifted under disturbance regimes. This large, multidisciplinary study was based at the Imnavait Creek watershed near Toolik Lake, ca. 250 km south of Prudhoe Bay on the North Slope of Alaska, and was a product of an important US National Research Council Committee Report of 1982. Much of the research presented here was undreamed of 20 years ago when several of the chapter authors and I camped on this watershed in an unusually cold July to formulate research priorities. Often, with snow falling at dawn, we would be awakened by Bob White's bagpipes to enjoy Al Johnson's and Skip Walker's pancakes and coffee and another fine day of field work. This volume suggests approaches for ecosystem management that are a result of the close integration between fieldwork and computer modeling. The groups working in specific disciplines have provided process summaries that extend our knowledge of the tundra, while the modeling-as well as the overall framework of the book-demonstrate the new promise of integrated land scape approaches for creating management tools. It is essential that we con tinue in the direction of the research described here, to build our capacity to understand the dimensions of ecosystem impacts that may result due to climate change or man's interference with natural ecosystem behavior. The lessons from R4D as summarized here provide a unique opportunity for truly joining ecosystem science with land and resource management in the Arctic now and in the future. Winter 1995 W.D. Billings Department of Botany Duke University Contents I Introduction ...................................... . 1 1 Ecosystem Response, Resistance, Resilience, and Recovery in Arctic Landscapes: Introduction J. F. REYNOLDS and J. D. TENHUNEN .................. . 3 1.1 Introduction ....................................... 3 1.2 NRC Committee Report ........ . . . . . . . . . . . . . . . . . . . . . . 6 1.3 The R4D Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Objectives and Conceptual Framework ................. 8 1.3.2 Program Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 Landscape Function ................................. 12 1.4 Summary .......................................... 14 References .................................................. 16 2 Integrated Ecosystem Research in Northern Alaska, 1947-1994 G. R. SHAVER ...................................... . 19 2.1 Introduction ...................................... . 19 2.2 Early Days at NARL ................................ . 19 2.3 The U. S. Tundra Biome Program ..................... . 21 2.4 The Meade River RATE Program .................... . 22 2.5 Eagle Creek and Eagle Summit ....................... . 23 2.6 The Arctic LTER Program at Toolik Lake .............. . 25 2.7 Other Studies In Alaska and Elsewhere ................ . 26 2.8 Summary and Prospects ............................ . 27 References ................................................. . 29 3 Disturbance and Recovery of Arctic Alaskan Vegetation D. A. WALKER ..................................... . 35 3.1 Introduction ...................................... . 35 3.2 Disturbance and Recovery ........................... . 35 3.3 Typical Disturbance and Recovery Patterns ............. . 39 3.3.1 Small Disturbed Patches ............................ . 39 3.3.2 Contaminants ..................................... . 43 3.3.2.1 Hydrocarbon Spills ................................. . 43 VIII Contents 3.3.2.2 Seawater and Reserve-Pit Spills ....................... . 45 3.3.3 Fire .............................................. . 47 3.3.4 Transportation Corridors ............................ . 48 3.3.4.1 Bulldozed Tundra and Related Disturbances ........... . 48 3.3.4.2 Off-Road Vehicle Trails ............................. . 50 3.3.4.2.1 Summer Travel .................................... . 50 3.3.4.2.2 Winter Travel ...................................... . 52 3.3.4.3 Permanent Roads and Pads .......................... . 54 3.3.4.4 Gravel Mines ...................................... . 55 3.3.4.5 Native Species in Revegetation of Gravel Pads and Mines .. 56 3.3.4.6 Road Dust ......................................... . 58 3.3.4.7 Roadside Impoundments ............................ . 59 3.3.5 Cumulative Impacts ................................ . 61 3.4 Conclusions ....................................... . 62 References .................................................. 64 4 Terrain and Vegetation of the Imnavait Creek Watershed D. A. WALKER and M. D. WALKER .................... . 73 4.1 Introduction ...................................... . 73 4.2 Terrain ........................................... . 73 4.2.1 Glacial Deposits ................................... . 74 4.2.2 Retransported Hillslope Deposits ..................... . 75 4.2.3 Colluvial Basin Deposits ............................. . 79 4.2.4 Floodplain Deposits ................................ . 79 4.3 Vegetation ........................................ . 79 4.3.1 Flora ............................................ . 79 4.3.2 Vegetation Types .................................. . 80 4.3.2.1 Lichen-Covered Rocks .............................. . 85 4.3.2.2 Dry Heath ........................................ . 85 4.3.2.2.1 Exposed Sites ...................................... . 88 4.3.2.2.2 Snowbeds ......................................... . 88 4.3.2.3 Tussock Tundra ................................... . 89 4.3.2.4 Riparian Areas .................................... . 90 4.3.2.5 Mires ............................................ . 92 4.3.2.6 Beaded Ponds ...................................... . 93 4.4 West-Facing Toposequence ........................... 93 4.5 Terrain Sensitivity to Disturbance ..................... 97 4.6 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. List of Plants for Imnavait Creek, Alaska . . . . . . . . . . . . . 99 References .................................................. 106 5 Vegetation Structure and Aboveground Carbon and Nutrient Pools in the Imnavait Creek Watershed S. C. HAHN, S. F. OBERBAUER, R. GEBAUER, N. E. GRULKE, O. L. LANGE, and J. D. TENHUNEN ..................... 109 Contents IX 5.1 Introduction ....................................... 109 5.2 Description of Vegetation ............................ 109 5.3 Sampling Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.3.1 Cover..... ...... ...... .... .. .... ...... ....... .. ... 112 5.3.2 Biomass and Nutrient Pools .......................... 112 5.4 Cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5 Aboveground Biomass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.5.1 Live Biomass ....................................... 114 5.5.2 Photosynthetic Biomass .............................. 116 5.5.3 Lichen Biomass ..................................... 117 5.5.4 Organic Litter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5.5 Watershed Patterns ................................. 118 5.6 Nutrient Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.6.1 Nand P in Heath Cryptogams ........................ 118 5.6.2 Nand P in Communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.7 Discussion and Conclusions .......................... 124 References .................................................. 126 II Physical Environment, Hydrology, and Transport . . . . . . . . 129 6 Energy Balance and Hydrological Processes in an Arctic Watershed L. HINZMAN, D. L. KANE, C. S. BENSON, and K. R. EVERETT .......................................... 131 6.1 Introduction ....................................... 131 6.2 Radiation and Thermal Regimes . . . . . . . . . . . . . . . . . . . . . . . 131 6.2.1 Surface Energy Balance .............................. 133 6.2.2 Snow Cover and Soil Thermal Regime .................. 13 7 6.3 Hydrological Processes .............................. 140 6.3.1 Snowmelt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.2 Plot and Basin Water Balance. . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.3 Runoff and Basin Discharge .......................... 143 6.3.4 Precipitation, Evaporation, and Evapotranspiration. . . . . . . 145 6.4 Energy Balance and Hydrology Models ................. 146 6.4.1 Simulation of the Thermal Regime. . . . . . . . . . . . . . . . . . . . . 146 6.4.2 Simulation of Snowmelt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.4.3 Simulation of Catchment Runoff. . . . . . . . . . . . . . . . . . . . . . . ISO 6.5 Conclusions ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 References .................................................. 152 7 Shortwave Reflectance Properties of Arctic Tundra Landscapes A. S. HOPE and D. A. STOW ........................... ISS 7.1 Introduction ....................................... ISS 7.2 Shortwave Reflectance Studies in Arctic Environments .... 156 x Contents 7.2.1 Environmental Considerations ........................ 156 7.2.2 Radiometric Data ................................... 156 7.2.3 Image Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.3 Spectral Reflectance ................................. 157 7.3.1 Aboveground Biomass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.3.2 Vegetation Composition ............................. 158 7.3.3 Landscape Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3.4 Effects of Dust Deposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.4 Albedo ............................................ 160 7.4.1 Undisturbed Tussock Tundra ......................... 160 7.4.2 Effects of Dust Deposition ............................ 161 7.5 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 References .................................................. 163 8 Isotopic Tracers for Investigating Hydrological Processes L. W. COOPER, I. L. LARSEN, C. SOLIS, J. M. GREBMEIER, C. R. OLSEN, D. K. SOLOMON, and R. B. COOK ........... 165 8.1 Introduction ....................................... 165 8.1.1 Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.1.2 Conservative vs Nonconservative Isotopes .............. 166 8.2 Nonconservative Tracers ............................. 167 8.3 Sulfur-35 .......................................... 167 8.4 Oxygen-18 ......................................... 168 8.4.1 Oxygen-18 Content of Snowpack. . . . . . . . . . . . . . . . . . . . . . . 169 8.4.2 Oxygen-18 Content of Imnavait Creek. . . . . . . . . . . . . . . . . . 169 8.4.3 Oxygen-18 Content of Soil Moisture ................... 172 8.4.4 Covariance of Oxygen-18 and Deuterium in Watershed Compartments ..................................... 172 8.4.5 Covariance of Oxygen-18 and Deuterium in Plant Water. . . 174 8.5 Long-Lived Radioisotopes: Lead-210 and Cesium-137 ..... 174 8.5.1 Distribution of I37Cs on Tundra and in Lake Sediments. . . . 175 8.5.2 Cycling of I37Cs in Annual Berries. . . . . . . . . . . . . . . . . . . . . . 176 8.5.3 Distribution oPlOPb in Tundra ........................ 178 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References .................................................. 179 III Nutrient and Carbon Fluxes .......................... 183 9 Surface Water Chemistry and Hydrology of a Small Arctic Drainage Basin K. R. EVERETT, D. L. KANE, and L. D. HINZMAN 185 9.1 Introduction ....................................... 185 9.2 Watershed Instrumentation .......................... 185 9.3 Snowmelt Period ................................... 187 9.3.1 Snowmelt Hydrology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Description:
The discovery of large petroleum reserves in northern Alaska prompted the US National Research Council to recommend priorities for ecological research on disturbance effects in the Arctic. Subsequently, this led to the implementation of a field study by the Department of Energy, based in a small wat
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.