Contributions in Mathematical and Computational Sciences 10 Jan Hendrik Bruinier Winfried Kohnen Editors L-Functions and Automorphic Forms LAF, Heidelberg, February 22-26, 2016 Contributions in Mathematical and Computational Sciences Volume 10 Serieseditors HansGeorgBock WilliJäger HansKnüpfer OtmarVenjakob Moreinformationaboutthisseriesathttp://www.springer.com/series/8861 Jan Hendrik Bruinier (cid:129) Winfried Kohnen Editors L-Functions and Automorphic Forms LAF, Heidelberg, February 22-26, 2016 123 Editors JanHendrikBruinier WinfriedKohnen FachbereichMathematik MathematischesInstitut TechnischeUniversitätDarmstadt UniversitätHeidelberg Darmstadt,Germany Heidelberg,Germany ISSN2191-303X ISSN2191-3048 (electronic) ContributionsinMathematicalandComputationalSciences ISBN978-3-319-69711-6 ISBN978-3-319-69712-3 (eBook) https://doi.org/10.1007/978-3-319-69712-3 LibraryofCongressControlNumber:2017961817 MathematicsSubjectClassification(2010):11-XX,11MXX,11FXX,11GXX,14CXX,14GXX, 32MXX,32NXX ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface This volume presents the proceedings of the conference L-Functions and Auto- morphic Forms that took place from February 22 to 26, 2016 at the University of Heidelberg, Germany. The theory of automorphic forms and their associated L-functionsis one of the central research areas in modern number theory,linking numbertheory,arithmeticalgebraic geometry,representationtheory,and complex analysis in many profound ways. It is an area of enduring interest to a wide class of mathematicians. The present volume contains carefully refereed articles byleadingexpertsin the field,givingnewand originalresults. Thetopicsinclude automorphicL-functionsandtheirspecialvalues,p-adicmodularforms,Eisenstein series,Borcherdsproducts,automorphicperiods,andmanymore. In addition,four preparatorycoursestook place in the week before the confer- ence, with the aim to introduce PhD students to basic and advanced concepts of the theory of automorphicforms. Lecture notes of three of those courses are also included. The conference took place in the Internationales Wissenschaftsforum Heidel- berg,whichisacenterforscholarlyexchangeinallareasofscienceandacademic researchlocated in the old town of Heidelberg.We are gratefulfor the hospitality andthatwehadtheopportunitytousethisexcellentvenue. WethankClaudiaAlfes-NeumannandEricHofmannfortheirhelpinpreparing theconferenceprogram,thewebpage,andthepreparatorycourses.Specialthanks are also due to Nicole Umlas and David Obermayr for their support in preparing and running the conference. We are grateful for the generous financial support from the DFG-Forschergruppe 1920 Heidelberg/Darmstadt Symmetry, Geometry, andArithmeticandtheMathematicsCenterHeidelberg(MATCH).Finally,wewish toextendoursincerethankstoallcontributorstothisvolumeandallspeakersofthe conference. Darmstadt,Germany JanHendrikBruinier Heidelberg,Germany WinfriedKohnen December2017 v vi Preface Grouppictureoftheconference Contents Sturm-LikeBoundforSquare-FreeFourierCoefficients ................... 1 PramathAnambyandSoumyaDas ImagesofMaass-PoincaréSeriesintheLowerHalf-Plane.................. 9 NickolasAndersen,KathrinBringmann,andLarryRolen OnDenominatorsofValuesofCertainL-FunctionsWhenTwisted byCharacters..................................................................... 25 SiegfriedBöcherer FirstOrderp-AdicDeformationsofWeightOneNewforms................ 39 HenriDarmon,AlanLauder,andVictorRotger ComputingInvariantsoftheWeilRepresentation........................... 81 StephanEhlenandNils-PeterSkoruppa The Metaplectic Tensor Product asan Instance of Langlands Functoriality...................................................................... 97 WeeTeckGan OnScatteringConstantsofCongruenceSubgroups......................... 115 MiguelGradosandAnna-MariavonPippich The Bruinier–Funke PairingandtheOrthogonalComplement ofUnaryThetaFunctions....................................................... 139 BenKaneandSiuHangMan Bounds for Fourier-JacobiCoefficientsof Siegel Cusp Forms ofDegreeTwo..................................................................... 159 WinfriedKohnenandJyotiSengupta HarmonicEisensteinSeriesofWeightOne ................................... 171 YingkunLi vii viii Contents ANoteontheGrowthofNearlyHolomorphicVector-ValuedSiegel ModularForms................................................................... 185 AmeyaPitale,AbhishekSaha,andRalfSchmidt CriticalValues of L-Functions for GL (cid:2)GL over a Totally 3 1 RealField ......................................................................... 195 A.RaghuramandGunjaSachdeva IndecomposableHarish-ChandraModulesforJacobiGroups............. 231 MartinRaum MultiplicityOneforCertainParamodularFormsofGenusTwo .......... 251 MirkoRösnerandRainerWeissauer RestrictionofHeckeEigenformstoHorocycles .............................. 265 HoChungSiuandKannanSoundararajan OntheTripleProductFormula:RealLocalCalculations................... 275 MichaelWoodbury AnIntroductiontotheTheoryofHarmonicMaassForms ................. 299 ClaudiaAlfes-Neumann ElementaryIntroductiontop-AdicSiegelModularForms ................. 317 SiegfriedBöcherer LiftingsandBorcherdsProducts............................................... 333 EricHofmann Sturm-Like Bound for Square-Free Fourier Coefficients PramathAnambyandSoumyaDas Abstract Inthisshortarticle,weshowtheexistenceofananalogueoftheclassical Sturm’sboundinthecontextofthesquare-freeFouriercoefficientsforcuspforms of square-free levels. This number is a cut-off to determine a cusp form from its initialfewsquare-freeFouriercoefficients.Wealsomentionsomequestionsinthis regard. 1 Introduction Thetheoryofmodularformsbynowoccupiesacentralplaceinnumbertheory,and its wide ranging applications in various branches of mathematics is well known. Onepleasant,andcomputationallyimportantfeatureofthese objectsisthatiff is such a form in Mk.(cid:2)/ ((cid:2) (cid:3) SL2.Z/ is a congruencesubgroupand k (cid:4) 0) with a Fourierexpansion,say X1 f.(cid:3)/D a.f;n/e2(cid:4)in(cid:3); .(cid:3) 2H Dfz2Cj=.z/>0g/ nD0 (1.1) thenthereexistsanumberA > 0dependingonthespacesuchthatifa.f;n/ D 0 foralln (cid:5) A,thenf D 0.ThesmallestsuchboundingeneralisknownasSturm’s boundintheliterature.Letusdenoteitby(cid:5).k;(cid:2)/andrecallthat (cid:5).k;(cid:2)/WD kŒSL2.Z/W(cid:2)(cid:6): (1.2) 12 InfactSturm’sboundisknownforvariouskindsofmodularforms,e.g.,half-integer weightforms,Siegelmodularformsetc.Inthispaperwewilldiscussthefollowing P.Anamby(cid:129)S.Das((cid:2)) DepartmentofMathematics,IndianInstituteofScience,Bangalore560012,India e-mail:[email protected];[email protected];[email protected]; [email protected] ©SpringerInternationalPublishingAG2017 1 J.H.Bruinier,W.Kohnen(eds.),L-FunctionsandAutomorphicForms, ContributionsinMathematicalandComputationalSciences10, https://doi.org/10.1007/978-3-319-69712-3_1