Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Knowledge Graphs

Knowledge Graphs Synthesis Lectures on Data, Semantics, and Knowledge Editor YingDing,UniversityofTexasatAustin PaulGroth,UniversityofAmsterdam FoundingEditorEmeritus JamesHendler,RensselaerPolytechnicInstitute SynthesisLecturesonData,Semantics,andKnowledgeiseditedbyYingDingoftheUniversityof TexasatAustinandPaulGrothoftheUniversityofAmsterdam.Theseriesfocusesonthepivotal rolethatdataonthewebandtheemergenttechnologiesthatsurrounditplaybothintheevolution oftheWorldWideWebaswellasapplicationsindomainsrequiringdataintegrationandsemantic analysis.Thelarge-scaleavailabilityofbothstructuredandunstructureddataontheWebhas enabledradicallynewtechnologiestodevelop.Ithasimpacteddevelopmentsinavarietyofareas includingmachinelearning,deeplearning,semanticsearch,andnaturallanguageprocessing. Knowledgeandsemanticsareacriticalfoundationforthesharing,utilization,andorganizationof thisdata.Theseriesaimsbothtoprovidepathwaysintothefieldofresearchandanunderstanding oftheprinciplesunderlyingthesetechnologiesforanaudienceofscientists,engineers,and practitioners. Topicstobeincluded: • Knowledgegraphs,bothpublicandprivate • LinkedData • Knowledgegraphandautomatedknowledgebaseconstruction • Knowledgeengineeringforlarge-scaledata • Machinereading • UsesofSemanticWebtechnologies • Informationandknowledgeintegration,datafusion • Variousformsofsemanticsontheweb(e.g.,ontologies,languagemodels,anddistributional semantics) • Terminology,Thesaurus,&OntologyManagement • Querylanguages iv KnowledgeGraphs AidanHogan,EvaBlomqvist,MichaelCochez,Claudiad’Amato,GerarddeMelo,Claudio Gutierrez,SabrinaKirrane,JoséEmilioLabraGayo,RobertoNavigli,SebastianNeumaier, Axel-CyrilleNgongaNgomo,AxelPolleres,SabbirM.Rashid,AnisaRula,LukasSchmelzeisen, JuanSequeda,SteffenStaab,andAntoineZimmermann 2021 WebDataAPIsforKnowledgeGraphs:EasingAccesstoSemanticDataforApplication Developers AlbertoMeroño-Peñuela,PasqualeLisena,andCarlosMartínez-Ortiz 2021 DesigningandBuildingEnterpriseKnowledgeGraphs JuanSequedaandOraLassila 2021 LinkedDataVisualization:Techniques,Tools,andBigData LauraPo,NikosBikakis,FedericoDesimoni,andGeorgePapastefanatos 2020 OntologyEngineering ElisaF.KendallandDeborahL.McGuinness 2019 DemystifyingOWLfortheEnterprise MichaelUschold 2018 ValidatingRDFData JoséEmilioLabraGayo,EricPrud’hommeaux,IovkaBoneva,andDimitrisKontokostas 2017 NaturalLanguageProcessingfortheSemanticWeb DianaMaynard,KalinaBontcheva,andIsabelleAugenstein 2016 TheEpistemologyofIntelligentSemanticWebSystems Mathieud’AquinandEnricoMotta 2016 EntityResolutionintheWebofData VassilisChristophides,VasilisEfthymiou,andKostasStefanidis 2015 v LibraryLinkedDataintheCloud:OCLC’sExperimentswithNewModelsofResource Description CarolJeanGodby,ShenghuiWang,andJeffreyK.Mixter 2015 SemanticMiningofSocialNetworks JieTangandJuanziLi 2015 SocialSemanticWebMining TopeOmitola,SebastiánA.Ríos,andJohnG.Breslin 2015 SemanticBreakthroughinDrugDiscovery BinChen,HuijunWang,YingDing,andDavidWild 2014 SemanticsinMobileSensing ZhixianYanandDipanjanChakraborty 2014 Provenance:AnIntroductiontoPROV LucMoreauandPaulGroth 2013 Resource-OrientedArchitecturePatternsforWebsofData BrianSletten 2013 AaronSwartz’sAProgrammableWeb:AnUnfinishedWork AaronSwartz 2013 Incentive-CentricSemanticWebApplicationEngineering ElenaSimperl,RobertaCuel,andMartinStein 2013 PublishingandUsingCulturalHeritageLinkedDataontheSemanticWeb EeroHyvönen 2012 VIVO:ASemanticApproachtoScholarlyNetworkingandDiscovery KatyBörner,MichaelConlon,JonCorson-Rikert,andYingDing 2012 LinkedData:EvolvingtheWebintoaGlobalDataSpace TomHeathandChristianBizer 2011 Copyright©2022byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. KnowledgeGraphs AidanHogan,EvaBlomqvist,MichaelCochez,Claudiad’Amato,GerarddeMelo,ClaudioGutierrez, SabrinaKirrane,JoséEmilioLabraGayo,RobertoNavigli,SebastianNeumaier, Axel-CyrilleNgongaNgomo,AxelPolleres,SabbirM.Rashid,AnisaRula,LukasSchmelzeisen, JuanSequeda,SteffenStaab,andAntoineZimmermann www.morganclaypool.com ISBN:9781636392356 paperback ISBN:9781636392363 PDF ISBN:9781636392370 hardcover DOI10.2200/S01125ED1V01Y202109DSK022 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONDATA,SEMANTICS,ANDKNOWLEDGE Lecture#22 SeriesEditors:YingDing,UniversityofTexasatAustin PaulGroth,UniversityofAmsterdam FoundingEditorEmeritus:JamesHendler,RensselaerPolytechnicInstitute SeriesISSN Print2691-2023 Electronic2691-2031 Knowledge Graphs Aidan Hogan Eva Blomqvist DCC,UniversidaddeChile;IMFD LinköpingUniversity Michael Cochez Claudia d’Amato VrijeUniversiteitAmsterdamandDiscoveryLab, UniversityofBari Elsevier Gerard de Melo Claudio Gutierrez HPI,UniversityofPotsdamandRutgersUniversity DCC,UniversidaddeChile;IMFD Sabrina Kirrane José Emilio Labra Gayo WUVienna UniversidaddeOviedo Roberto Navigli Sebastian Neumaier SapienzaUniversityofRome St.PöltenUniversityofAppliedSciences Axel-Cyrille Ngonga Ngomo Axel Polleres DICE,UniversitätPaderborn WUVienna Sabbir M. Rashid Anisa Rula TetherlessWorldConstellation,Rensselaer UniversityofBrescia PolytechnicInstitute Lukas Schmelzeisen Juan Sequeda UniversitätStuttgart data.world Steffen Staab Antoine Zimmermann UniversitätStuttgartandUniversityofSouthampton ÉcoledesminesdeSaint-Étienne SYNTHESISLECTURESONDATA,SEMANTICS,ANDKNOWLEDGE#22 M &C Morgan &cLaypool publishers ABSTRACT This book provides a comprehensive and accessible introduction to knowledge graphs, which haverecentlygarnerednotableattentionfrombothindustryandacademia.Knowledgegraphs arefoundedontheprincipleofapplyingagraph-basedabstractiontodata,andarenowbroadly deployedinscenariosthatrequireintegratingandextractingvaluefrommultiple,diversesources ofdataatlargescale. The book defines knowledge graphs and provides a high-level overview of how they are used.Itpresentsandcontrastspopulargraphmodelsthatarecommonlyusedtorepresentdataas graphs,andthelanguagesbywhichtheycanbequeriedbeforedescribinghowtheresultingdata graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques— based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledgegraphsandsurveysrecentopenandenterpriseknowledgegraphsandtheindustries orapplicationswithinwhichtheyhavebeenmostwidelyadopted.Thebookclosesbydiscussing thecurrentlimitationsandfuturedirectionsalongwhichknowledgegraphsarelikelytoevolve. This book is aimed at students, researchers, and practitioners who wish to learn more aboutknowledgegraphsandhowtheyfacilitateextractingvaluefromdiversedataatlargescale. Tomakethebookaccessiblefornewcomers,runningexamplesandgraphicalnotationareused throughout.Formaldefinitionsandextensivereferencesarealsoprovidedforthosewhooptto delvemoredeeplyintospecifictopics. KEYWORDS knowledge graphs, graph databases, knowledge graph embeddings, graph neu- ral networks, ontologies, knowledge graph refinement, knowledge graph quality, knowledgebases,artificialintelligence,semanticweb,machinelearning ix Contents Preface ........................................................... xv Acknowledgments ................................................ xix 1 Introduction .......................................................1 2 DataGraphs .......................................................5 2.1 Models ......................................................... 5 2.1.1 DirectedEdge-LabeledGraphs ............................... 6 2.1.2 HeterogeneousGraphs ...................................... 8 2.1.3 PropertyGraphs ........................................... 9 2.1.4 GraphDataset............................................ 11 2.1.5 OtherGraphDataModels.................................. 12 2.1.6 GraphStores ............................................. 13 2.2 Querying....................................................... 13 2.2.1 BasicGraphPatterns ...................................... 13 2.2.2 ComplexGraphPatterns ................................... 16 2.2.3 NavigationalGraphPatterns ................................ 19 2.2.4 OtherFeatures ........................................... 22 2.2.5 QueryInterfaces .......................................... 22 3 Schema,Identity,andContext .......................................25 3.1 Schema ........................................................ 25 3.1.1 SemanticSchema ......................................... 25 3.1.2 ValidatingSchema ........................................ 27 3.1.3 EmergentSchema......................................... 32 3.2 Identity ........................................................ 35 3.2.1 PersistentIdentifiers ....................................... 35 3.2.2 ExternalIdentityLinks..................................... 37 3.2.3 Datatypes................................................ 38 3.2.4 Lexicalization ............................................ 38 3.2.5 ExistentialNodes ......................................... 39 x 3.3 Context........................................................ 40 3.3.1 DirectRepresentation...................................... 40 3.3.2 Reification ............................................... 41 3.3.3 Higher-ArityRepresentation ................................ 41 3.3.4 Annotations.............................................. 42 3.3.5 OtherContextualFrameworks............................... 44 4 DeductiveKnowledge ..............................................47 4.1 Ontologies ..................................................... 48 4.1.1 InterpretationsandModels ................................. 49 4.1.2 OntologyFeatures......................................... 51 4.1.3 Entailment .............................................. 56 4.1.4 If-Thenvs.If-and-Only-IfSemantics ......................... 56 4.2 Reasoning ...................................................... 57 4.2.1 Rules ................................................... 57 4.2.2 DescriptionLogics ........................................ 60 5 InductiveKnowledge ...............................................67 5.1 GraphAnalytics ................................................. 67 5.1.1 Techniques .............................................. 69 5.1.2 Frameworks.............................................. 70 5.1.3 AnalyticsonDataGraphs .................................. 74 5.1.4 AnalyticswithQueries ..................................... 75 5.1.5 AnalyticswithEntailment .................................. 76 5.2 KnowledgeGraphEmbeddings..................................... 76 5.2.1 Tensor-BasedModels ...................................... 78 5.2.2 LanguageModels ......................................... 88 5.2.3 Entailment-AwareModels.................................. 90 5.3 GraphNeuralNetworks........................................... 91 5.3.1 RecursiveGraphNeuralNetworks............................ 91 5.3.2 Non-RecursiveGraphNeuralNetworks ....................... 95 5.4 SymbolicLearning............................................... 96 5.4.1 RuleMining ............................................. 97 5.4.2 AxiomMining .......................................... 100 5.4.3 HypothesisMining....................................... 102

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.