ebook img

Kidney Organogenesis: Methods and Protocols PDF

242 Pages·2019·7.381 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kidney Organogenesis: Methods and Protocols

Methods in Molecular Biology 1926 Seppo Vainio Editor Kidney Organogenesis Methods and Protocols M M B ETHODS IN OLECULAR IO LO GY SeriesEditor JohnM.Walker School of Lifeand MedicalSciences University ofHertfordshire Hatfield, Hertfordshire,AL109AB,UK Forfurther volumes: http://www.springer.com/series/7651 Kidney Organogenesis Methods and Protocols Edited by Seppo Vainio Biocenter Oulu, Laboratory of Developmental Biology, Oulu University, Oulu, Finland; InfoTech Oulu, Oulu University, Oulu, Finland; Borealis Biobank of Northern Finland, Oulu University, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, Oulu University, Oulu, Finland Editor SeppoVainio BiocenterOulu,LaboratoryofDevelopmentalBiology OuluUniversity Oulu,Finland InfoTechOulu OuluUniversity Oulu,Finland BorealisBiobankofNorthernFinland OuluUniversity Oulu,Finland FacultyofBiochemistryandMolecularMedicine OuluUniversity Oulu,Finland ISSN1064-3745 ISSN1940-6029 (electronic) MethodsinMolecularBiology ISBN978-1-4939-9020-7 ISBN978-1-4939-9021-4 (eBook) https://doi.org/10.1007/978-1-4939-9021-4 LibraryofCongressControlNumber:2018966342 ©SpringerScience+BusinessMedia,LLC,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproduction onmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronicadaptation, computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulations andthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedto betrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty, expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeenmade. Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. CoverCaption:Opticalprojectiontomography-basedvisualizationofthenephrons(inred)andthecollectingducttree (ingrey).AutomatedspotdetectionfunctionoftheImarisprogramwasappliedtohighlightthenephrons(inyellow). E16.5.mousekidney. This Humana Press imprint is published by the registered company Springer Science+Business Media, LLC, part of SpringerNature. Theregisteredcompanyaddressis:233SpringStreet,NewYork,NY10013,U.S.A. Preface The mammalian kidney has served as a model to study the fundamental developmental mechanismsfromthelate1950swhenCliffordGrobsteinestablishedthecapacitytoculture the microdissected kidney rudiments. By using such microsurgery approaches and organ culture technologies, Lauri Saxe´n’s team showed later that like in the primary embryonic induction,the processof organogenesisinvolves signals that mediatethe secondaryinduc- tive tissue interactions. In the context of the kidney, signaling occurs between the ureteric budandthemetanephricmesenchyme.Thesecoordinatethestepwisekidneymorphogene- sisandtheassociatedcelldifferentiation. Even though the powers to use the kidney as a developmental model system were establishedmorethan60yearsago,theclassicexvivokidneycultureapproachwastechno- logically still very limited. Especially no ways existed to assay the roles of the molecular players involved. Pioneers such as Peter Ekblom used initially specific antibodies and small molecule inhibitorsto target the molecular mediators,but the actual gene functionscould notbeapproached. When the embryonic stem cell culture and the gene targeting technologies became a routine, this opened the era of the renal functional genetics. By using the gene knockout approach,manygeneswereidentifiedtobeessentialforkidneyontogenesis.Evidencecould befinallyreachednowthatthesignalsthatmediatethekidneytubuleinductionareencoded bytheWntgenefamily.TheWntsserveasthekeymediatorsintheclassictubuleinduction modelsystemandinvivosignalingfromtheuretericbudtothemetanephricmesenchymeto trigger nephrogenesis.Therenaltissue-specificgeneknockoutcapacitywasastepforward, and to date genefunctions can be inactivated fromthe major kidney tissue compartments. At this stage, the ex vivo kidney organ culture models provided again a valuable tool to depicttheepistasisrelationshipsofthegenesinorganogenesis. During the recent years, the kidney tissue engineering methods to study the mechan- isms in tissue biogenesis have undergone a major revolution. The mammalian kidney rudiment can be introduced to single cells. However, kidney developmental capacity can bereconstitutedthereafter.Thekidneyprogenitorcellscanalsobefrozen,andthecellfates canbestudiedatthesingle-celllevelaswell. The 4D imaging technologies together with the availability of wealth of the gene- engineered renal indicator developmental and disease models have opened a series of experimentalstudies.Themoleculargenetictechnologieshavedevelopedtoasophistication that theinvolvedgeneticprogramscan bestudiedalsoat thesingle-celllevel.Importantly, functionsofspecificgenesandcandidaterenaldevelopmentalfactorscanbeapproachedin theexvivosettingsaswell. Majoradvancementshavetakenplacealsointherenalstemcelltechnologies.Protocols have become available to program the pluripotent cells to the defined cell lineages such as the ones of the kidney. Such protocols are in our toolbox for the mouse and human. The skills to take a good use of the patient-derived cells with a kidney disease are a historical opening in human kidney-related medical research. Such patient-derived cells can also be storedinthebiobankstogainmorevalue.Importantlykidneyorganoidscanbegenerated from such engineered cells, and the CRISPR gene editing can be achieved in these cells as v vi Preface well. These approaches can now be combined to establish large-scale gene editing micro- fluidicsandrobotic-automatedplatforms. The current Springer book contains a series of protocols that allow their user to get access both to the classic and the very modern ex vivo mammalian developmental kidney model systems. The book contains chapters that illustrate the elegant 3D and 4D imaging modalities, the powers of the kidney decellularizing, and how to build the kidney tissues fromthereprogrammedcells. Thepioneersof thefield arelikelythrilledofthe capacitiesthat thekidneycommunity hastodayintheiruse.Attheirtimetheycouldonlydreamofthem.Viathecombinationof the classic and the modern renal technologies, we will be now able to generate more efficientlyvaluefor thepatientsthatlookfor newtherapiesfor theirkidneysymptoms. Oulu,Finland SeppoVainio Contents Preface ..................................................................... v Contributors................................................................. ix PART I GENERATION OF MOSAIC EMBRYONIC KIDNEYS AND CULTURE OF THE KIDNEY TISSUES EX VIVO 1 GeneratingGeneticMosaicMouseEmbryosorOrganoids forStudiesofKidneyDevelopment ....................................... 3 FrankCostantini 2 MouseExVivoKidneyCultureMethods .................................. 23 AnneliisIhermann-HellaandSatuKuure 3 Serum-FreeOrganCultureoftheEmbryonicMouseUreter................. 31 FilipaM.LopesandAdrianS.Woolf 4 ExperimentalTubulogenesisInductionModelintheMouse ................. 39 AleksandraRak-Raszewska PART II EMBRYONIC KIDNEY PROGENITOR CELL AND 3D KIDNEY MODEL CELL LIKE BASED CULTURES 5 DissociationofTissuesforSingle-CellAnalysis ............................. 55 AndrewS.PotterandS.StevenPotter 6 Long-TermCultureofNephronProgenitorCellsExVivo................... 63 AaronC.Brown,AshwaniK.Gupta,andLeifOxburgh 7 3DCellCultureModelsofEpithelialTissues............................... 77 KaiZhangandAkiManninen PART III PROGRAMMING THE KIDNEY CELL FATES IN HUMAN PLURIPOTENT CELLS 8 GenerationofThree-DimensionalNephronsfromMouse andHumanPluripotentStemCells ....................................... 87 YasuhiroYoshimura,AtsuhiroTaguchi,andRyuichiNishinakamura 9 GeneratingMultipleKidneyProgenitorsandCellTypes fromHumanPluripotentStemCells ...................................... 103 KrithikaHariharan,PetraReinke,andAndreasKurtz 10 ProtocoltoGenerateUretericBudStructuresfromHumaniPSCells......... 117 Shin-IchiMae,MakotoRyosaka,andKenjiOsafune vii viii Contents PART IV PROTOCOLS TO TARGET THE FUNCTIONAL PLAYERS IN KIDNEY ONTOGENESIS 11 InvestigatingAspectsofRenalPhysiologyandPharmacology inOrganandOrganoidCulture.......................................... 127 MelanieL.Lawrence,MonaElhendawi,andJamieA.Davies 12 VirusasRenalFunctionalGeneticTools................................... 143 AbhishekSharmaandSandhanakrishnanCattavarayane 13 GeneEditingin3DCulturedNephronProgenitorCellLines................ 151 ZhongweiLi,ToshikazuAraoka,andJuanCarlosIzpisuaBelmonte PART V 4D AND 3D EX VIVO IMAGING OF EMBRYONIC KIDNEY DECELLULARIZATION 14 Time-LapseTechnologiesand4DImagingofKidneyDevelopment .......... 163 UllaSaarelaandIlyaSkovorodkin 15 DecellularizingandRecellularizingAdultMouseKidneys.................... 169 TheresaChow,JenniferWhiteley,andIanM.Rogers 16 OpticalProjectionTomographyImagingtoStudyKidneyOrganogenesis ..... 185 RenataPrunskaite-Hyyryla€inen PART VI DROSOPHILA AS A MODEL TO TARGET CONSERVED RENAL ONTOGENESIS GENES SUCH AS THE TEASHIRT 17 EpithelialFunctionintheDrosophilaMalpighianTubule: AnInVivoRenalModel................................................. 203 Shireen-A.Davies,PabloCabrero,RichardMarley, GuillermoMartinezCorrales,SauravGhimire,AnthonyJ.Dornan, andJulianA.T.Dow 18 AnalysisoftheTeashirtTargetGenesinUretericBudDevelopment .......... 223 LaurentFasano,IreneSanchez-Martin,andXavierCaubit PART VII COMPUTATIONAL APPROACHES TO KIDNEY ONTOGENESIS 19 MethodsofComputationalAnalysisinKidneyDevelopment................. 235 PauliTikkaandFranzSchaefer Index ...................................................................... 247 Contributors TOSHIKAZUARAOKA (cid:1) Center foriPSCellResearchandApplication(CiRA),Kyoto University,Kyoto,Japan JUANCARLOSIZPISUABELMONTE (cid:1) GeneExpressionLaboratory,TheSalkInstitutefor BiologicalStudies,LaJolla,CA,USA AARONC.BROWN (cid:1) Center forMolecularMedicine,MaineMedicalCenterResearch Institute,Scarborough,ME,USA PABLO CABRERO (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK SANDHANAKRISHNANCATTAVARAYANE (cid:1) FacultyofVeterinaryMedicine,SectionofPathology, DepartmentofVeterinaryBiosciences,UniversityofHelsinki,Helsinki,Finland XAVIERCAUBIT (cid:1) AixMarseilleUniversity,CNRS,IBDM,Marseille,France THERESACHOW (cid:1) Lunenfeld-TanenbaumResearchInstitute,Mt.SinaiHospital,Toronto, ON,Canada;DepartmentofPhysiology,UniversityofToronto,Toronto,ON,Canada GUILLERMOMARTINEZCORRALES (cid:1) InstituteofMolecular,CellandSystemsBiology,Collegeof Medical,VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK FRANKCOSTANTINI (cid:1) DepartmentofGeneticsandDevelopment,1418HammerHealth SciencesCenter,ColumbiaUniversity,NewYork,NY,USA JAMIEA.DAVIES (cid:1) DeaneryofBiomedicalSciences,UniversityofEdinburgh,Edinburgh,UK SHIREEN-A.DAVIES (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK ANTHONYJ.DORNAN (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK JULIAN A.T.DOW (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK MONAELHENDAWI (cid:1) DeaneryofBiomedicalSciences,UniversityofEdinburgh,Edinburgh, UK;FacultyofMedicine,ClinicalPathologyDepartment,MansouraUniversity,El- Mansoura,Egypt LAURENTFASANO (cid:1) AixMarseilleUniversity,CNRS,IBDM,Marseille,France SAURAVGHIMIRE (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK ASHWANIK.GUPTA (cid:1) Center forMolecularMedicine,MaineMedicalCenterResearch Institute,Scarborough,ME,USA KRITHIKAHARIHARAN (cid:1) Berlin–BrandenburgCenter forRegenerativeTherapies(BCRT), Charite´-Universita€tsmedizinBerlin,Berlin,Germany ANNELIISIHERMANN-HELLA (cid:1) GM-unitatHelsinkiInstituteofLifeScienceandMedicum, UniversityofHelsinki,Helsinki,Finland ANDREASKURTZ (cid:1) Berlin–BrandenburgCenterforRegenerativeTherapies(BCRT),Charite´ -Universita€tsmedizinBerlin,Berlin,Germany SATUKUURE (cid:1) GM-unitatHelsinkiInstituteofLifeScienceandMedicum, InstituteofBiotechnology,UniversityofHelsinki,Helsinki,Finland MELANIEL.LAWRENCE (cid:1) DeaneryofBiomedicalSciences,UniversityofEdinburgh, Edinburgh,UK ix x Contributors ZHONGWEI LI (cid:1) DivisionofNephrologyandHypertension,DepartmentofMedicineand USC/UKROKidneyResearchCenter,KeckSchoolofMedicineoftheUniversityof SouthernCalifornia,LosAngeles,CA,USA;DepartmentofStemCellBiologyand RegenerativeMedicine,KeckSchoolofMedicineoftheUniversityofSouthernCalifornia, LosAngeles,CA,USA FILIPAM.LOPES (cid:1) FacultyofBiologyMedicineandHealth,DivisionofCellMatrixBiology andRegenerativeMedicine,SchoolofBiologicalSciences,UniversityofManchester, Manchester,UK SHIN-ICHIMAE (cid:1) Center foriPSCellResearchandApplication(CiRA),KyotoUniversity, Kyoto,Japan AKIMANNINEN (cid:1) FacultyofBiochemistryandMolecularMedicine,BiocenterOulu,Oulu Center forCell-MatrixResearch,UniversityofOulu,Oulu,Finland RICHARDMARLEY (cid:1) InstituteofMolecular,CellandSystemsBiology,CollegeofMedical, VeterinaryandLifeSciences,UniversityofGlasgow,Glasgow,Scotland,UK RYUICHINISHINAKAMURA (cid:1) DepartmentofKidneyDevelopment,InstituteofMolecular EmbryologyandGenetics,KumamotoUniversity,Kumamoto,Japan KENJIOSAFUNE (cid:1) Center foriPSCellResearchandApplication(CiRA),KyotoUniversity, Kyoto,Japan LEIF OXBURGH (cid:1) Center forMolecularMedicine,MaineMedicalCenterResearchInstitute, Scarborough,ME,USA ANDREWS.POTTER (cid:1) DivisionofDevelopmentalBiology,CincinnatiChildren’sMedical Center,Cincinnati,OH,USA S.STEVENPOTTER (cid:1) DivisionofDevelopmentalBiology,CincinnatiChildren’sMedical Center,Cincinnati,OH,USA RENATAPRUNSKAITE-HYYRYLA€INEN (cid:1) FacultyofBiochemistryandMolecularMedicine, UniversityofOulu,Oulu,Finland ALEKSANDRARAK-RASZEWSKA (cid:1) FacultyofBiochemistryandMolecularMedicine,University ofOulu,Oulu,Finland PETRA REINKE (cid:1) Berlin–BrandenburgCenter forRegenerativeTherapies(BCRT),Charite´- Universita€tsmedizinBerlin,Berlin,Germany;DepartmentofNephrologyandIntensive Care,Charite´-UniversityMedicineBerlin,Berlin,Germany IANM.ROGERS (cid:1) Lunenfeld-TanenbaumResearchInstitute,Mt.SinaiHospital,Toronto, ON,Canada;DepartmentofPhysiology,UniversityofToronto,Toronto,ON,Canada; DepartmentofObstetricsandGynecology,UniversityofToronto,Toronto,ON,Canada MAKOTORYOSAKA (cid:1) CenterforiPSCellResearchandApplication(CiRA),KyotoUniversity, Kyoto,Japan ULLASAARELA (cid:1) FacultyofBiochemistryandMolecularMedicine,UniversityofOulu,Oulu, Finland;LaboratoryofDevelopmentalBiology,BiocenterOulu,InfoTech,Oulu,Finland; OuluCenter forCellMatrixResearch,Oulu,Finland IRENE SANCHEZ-MARTIN (cid:1) AixMarseilleUniversity,CNRS,IBDM,Marseille,France FRANZSCHAEFER (cid:1) DepartmentofMedicine,UniversityofHeidelberg,Heidelberg,Germany ABHISHEKSHARMA (cid:1) FacultyofBiochemistryandMolecularMedicine,BiocenterOulu, UniversityofOulu,Oulu,Finland ILYASKOVORODKIN (cid:1) FacultyofBiochemistryandMolecularMedicine,UniversityofOulu, Oulu,Finland;LaboratoryofDevelopmentalBiology,BiocenterOulu,InfoTech,Oulu, Finland;OuluCenter forCellMatrixResearch,Oulu,Finland ATSUHIRO TAGUCHI (cid:1) DepartmentofGenomeRegulation,MaxPlanckInstitutefor MolecularGenetics,Berlin,Germany

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.