ebook img

Jordan Structures in Geometry and Analysis PDF

272 Pages·2012·1.217 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jordan Structures in Geometry and Analysis

CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´ S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 190 JordanStructuresinGeometryandAnalysis Downloaded from University Publishing Online. This is copyrighted material CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors: B.BOLLOBA´S,W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK,B.SIMON,B.TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 151. FrobeniusManifoldsandModuliSpacesforSingularities.ByC.HERTLING 152. PermutationGroupAlgorithms.ByA.SERESS 153. AbelianVarieties,ThetaFunctionsandtheFourierTransform.ByA.POLISHCHUK 154. FinitePackingandCovering.ByK.BO¨RO¨CZKY, JR 155. TheDirectMethodinSolitonTheory.ByR.HIROTA.Editedandtranslatedby A.NAGAI,J.NIMMO,andC.GILSON 156. HarmonicMappingsinthePlane.ByP.DUREN 157. AffineHeckeAlgebrasandOrthogonalPolynomials.ByI.G.MACDONALD 158. Quasi-FrobeniusRings.ByW.K.NICHOLSONandM.F.YOUSIF 159. TheGeometryofTotalCurvatureonCompleteOpenSurfaces.ByK.SHIOHAMA, T.SHIOYA,andM.TANAKA 160. ApproximationbyAlgebraicNumbers.ByY.BUGEAUD 161. EquivalenceandDualityforModuleCategories.ByR.R.COLBYandK.R.FULLER 162. Le´vyProcessesinLieGroups.ByM.LIAO 163. LinearandProjectiveRepresentationsofSymmetricGroups.ByA.KLESHCHEV 164. TheCoveringPropertyAxiom,CPA.ByK.CIESIELSKIandJ.PAWLIKOWSKI 165. ProjectiveDifferentialGeometryOldandNew.ByV.OVSIENKOand S.TABACHNIKOV 166. TheLe´vyLaplacian.ByM.N.FELLER 167. Poincare´DualityAlgebras,Macaulay’sDualSystems,andSteenrodOperations. ByD.MEYERandL.SMITH 168. TheCube-AWindowtoConvexandDiscreteGeometry.ByC.ZONG 169. QuantumStochasticProcessesandNoncommutativeGeometry.ByK.B.SINHAand D.GOSWAMI 170. PolynomialsandVanishingCycles.ByM.TIBA˘R 171. OrbifoldsandStringyTopology.ByA.ADEM,J.LEIDA,andY.RUAN 172. RigidCohomology.ByB.LESTUM 173. EnumerationofFiniteGroups.ByS.R.BLACKBURN,P.M.NEUMANN, andG.VENKATARAMAN 174. ForcingIdealized.ByJ.ZAPLETAL 175. TheLargeSieveanditsApplications.ByE.KOWALSKI 176. TheMonsterGroupandMajoranaInvolutions.ByA.A.IVANOV 177. AHigher-DimensionalSieveMethod.ByH.G.DIAMOND,H.HALBERSTAM,and W.F.GALWAY 178. AnalysisinPositiveCharacteristic.ByA.N.KOCHUBEI 179. DynamicsofLinearOperators.ByF.BAYARTandE´.MATHERON 180. SyntheticGeometryofManifolds.ByA.KOCK 181. TotallyPositiveMatrices.ByA.PINKUS 182. NonlinearMarkovProcessesandKineticEquations.ByV.N.KOLOKOLTSOV 183. PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.DAT,S.ORLIK, andM.RAPOPORT 184. AlgebraicTheories.ByJ.ADA´MEK,J.ROSICKY´,andE.M.VITALE 185. RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem. ByA.KATOKandV.NIT¸ICA˘ 186. Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187. Convexity:AnAnalyticViewpoint.ByB.SIMON 188. ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDARand J.R.PARTINGTON 189. NonlinearPerronFrobeniusTheory.ByB.LEMMENSandR.NUSSBAUM 190. JordanStructuresinGeometryandAnalysis.ByC.-H.CHU 191. MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.OSSWALD Jordan Structures in Geometry and Analysis CHO-HO CHU QueenMary,UniversityofLondon cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107016170 (cid:2)C C.-H.Chu2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-01617-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Tomyfamily Contents Preface pageix 1 JordanandLietheory 1 1.1 Jordanalgebras 1 1.2 Jordantriplesystems 13 1.3 LiealgebrasandtheTits–Kantor–Koecherconstruction 39 1.4 MatrixLiegroups 50 Notes 61 2 Jordanstructuresingeometry 62 2.1 BanachmanifoldsandLiegroups 62 2.2 Riemannianmanifolds 82 2.3 JordanalgebrasandRiemanniansymmetricspaces 101 2.4 JordantriplesandRiemanniansymmetricspaces 121 2.5 Jordantriplesandsymmetricdomains 144 Notes 169 3 Jordanstructuresinanalysis 171 3.1 Banachspaces 171 3.2 Holomorphicmappings 183 3.3 ContractiveprojectionsonJB*-triples 202 3.4 IsometriesbetweenJB-triples 217 3.5 Hilbertspaces 227 Notes 248 Bibliography 251 Index 257 vii Preface Despite the rapid advances in Jordan theory and its diverse applications in the last two decades, there are few convenient references in book form for beginnersandresearchersinthefield.Thisbookisamodestattempttofillpart ofthisgap. Theaimofthebookistointroducetoawidereadership,includingresearch students,thecloseconnectionsbetweenJordanalgebras,geometry,andanaly- sis.Inparticular,wegiveaself-containedandsystematicexpositionofaJordan algebraicapproachtosymmetricmanifoldswhichmaybeinfinite-dimensional, and some fundamental results of Jordan theory in complex and functional analysis.Inshort,thisbookisaboutJordangeometricanalysis. AlthoughtheconceptofaJordanalgebrawasintroducedoriginallyforquan- tumformalism,byP.Jordan,J.vonNeumannandE.Wigner[64],unexpected and fruitful connections with Lie algebras, geometry and analysis were soon discovered.Inthelastthreedecades,manymoreapplicationsofJordanalge- braicstructureshavebeenfound.Weexposesomeoftheseapplicationsinthis book.Needlesstosay,thechoiceoftopicsisinfluencedbytheauthor’spredilec- tions, and regrettable omissions are inevitable if the length of the book is to bekeptmanageable.Nevertheless,anefforthasbeenmadetocoversufficient basicresultsandJordantechniquestoprovideahandyreference. We begin by discussing the basic structures of Jordan algebras and Jordan triplesystemsinChapter1,andtheconnectionsoftheseJordanstructuresto Lietheory.AnimportantlinkistheTits–Kantor–Koecherconstruction,which establishes the correspondence between Jordan triple systems and a class of gradedLiealgebras.WediscusssomedetailsofclassicalmatrixLiegroupsand theirLiealgebrasandusethemasexamplestoillustratetheseconnections,as wellaspreparationfortheintroductionofBanachLiegroupsinthefollowing chapter. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.