JOINT PERFORMANCE CHARACTERIZATION OF BONDED WHITETOPPING OVERLAYS by Manik Barman Bachelor of Technology in Civil Engineering, North Eastern Regional Institute of Science and Technology, India, 2002 Master of Technology in Civil Engineering, Indian Institute of Technology (IIT) Kharagpur, India 2004 Submitted to the Graduate Faculty of The Swanson School of Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2014 UNIVERSITY OF PITTSBURGH SWANSON SCHOOL OF ENGINEERING This dissertation was presented by Manik Barman It was defended on November 8, 2013 and approved by John Brigham, Ph.D., Assistant Professor Department of Civil and Environmental Engineering Donald J. Janssen, Ph.D., Associate Professor, Civil and Environmental Engineering, University of Washington, Seattle Luis E. Vallejo, Ph.D., Professor Department of Civil and Environmental Engineering Dissertation Director: Julie M. Vandenbossche, Assistant Professor Department of Civil and Environmental Engineering ii Copyright © by Manik Barman 2014 iii JOINT PERFORMANCE CHARACTERIZATION OF BONDED WHITETOPPING OVERLAYS Manik Barman, Ph.D. University of Pittsburgh, 2014 Poor joint performance in whitetopping overlays increases the magnitude of the interlayer debonding stress and load related stress, which can result in corner and longitudinal cracks. However, currently available whitetopping design procedures do not account for the joint performance. Fiber reinforced concrete (FRC) is commonly used in constructing these overlays but the contribution of the fiber to load transfer has never been quantified either. Under the scope of this dissertation, a new, economical, small-scale joint performance characterization procedure (B ) was developed. The results from the B procedure were ALT ALT validated by comparing them to the results from large scale joint performance tests (S ). The ALT joint performances of one plain concrete (PC) and two FRC mixtures were characterized with respect to mixture type, crack width and number of load cycles. Load transfer efficiency (LTE) and dissipated energy ratio (DER) prediction models were developed for all the mixtures. It was found that FRC provides a 15 to 25 percent higher joint performance as compared to PC. The fiber plays a larger role in load transfer when the joint is fatigued. Interestingly fibers do not fatigue even after 10 million load cycles. Using finite element analysis, a relationship was developed for determining the joint stiffness (AGG*) for whitetopping overlay. It was found that the load-related stress can be reduced by 6 percent with application of FRC while the interface debonding stress can be reduced by 50 to 72 percent. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................. XXVI 1.0 INTRODUCTION ............................................................................................... 1 1.1 PROBLEM STATEMENT ................................................................................. 1 1.2 RESEARCH SIGNIFICANCE AND OBJECTIVES....................................... 2 1.3 STRUCTURE OF THE DISSERTATION ....................................................... 5 2.0 LITERATURE REVIEWS AND BACKGROUND ......................................... 5 2.1 WHITETOPPING DESIGN PROCEDURES .................................................. 8 2.2 BONDED WHITETOPPING FAILURE MODES .......................................... 9 2.3 JOINT PERFORMANCE TERMINOLOGIES ............................................. 11 2.4 JOINT PERFORMANCE MEDIUM .............................................................. 14 2.5 JOINT CRACK WIDTH RANGES................................................................. 19 2.6 INFLUENCE OF JOINT PERFORMANCE ................................................. 23 2.6.1 Debonding of HMA Layer ......................................................................... 23 2.6.2 Stress in the Loaded Slab ........................................................................... 24 2.7 JOINT PERFORMANCE EVALUATION PROCEDURES IN LITERATURE ................................................................................................... 24 2.8 FACTORS INFLUENCING JOINT PERFORMANCE ............................... 33 2.8.1 Volumetric Surface Texture ....................................................................... 33 2.8.2 Crack Width ................................................................................................ 44 v 2.8.3 Number of Load Applications ................................................................... 51 2.8.4 Thickness of the Slab .................................................................................. 52 2.9 FIBER REINFORCED CONCRETE IN JOINT PERFORMANCE BENEFITS ......................................................................................................... 53 2.10 CONCLUSIONS ................................................................................................ 60 3.0 DEVELOPMENT OF JOINT PERFORMANCE SETUPS ......................... 61 3.1 INTRODUCTION ............................................................................................. 61 3.2 BEAM ACCELERATED LOAD TESTING (B ) ...................................... 62 ALT 3.2.1 Setup Design Principle ................................................................................ 62 3.2.2 Components ................................................................................................. 64 3.2.3 Load Magnitude and Location .................................................................. 72 3.2.4 Specimen Preparation ................................................................................ 82 3.2.5 Test Procedure ............................................................................................ 87 3.3 SLAB ACCELERATED LOAD TESTING (S ) ........................................ 89 ALT 3.3.1 Setup Design Principle ................................................................................ 89 3.3.2 Components ................................................................................................. 89 3.3.3 Specimen Preparation ................................................................................ 95 3.3.4 Test Procedure ............................................................................................ 98 3.4 JOINT PERFORMANCE EVALUATION PROCEDURE ........................ 101 3.4.1 Joint Performance through LTE ............................................................. 101 3.4.1.1 B .................................................................................................... 101 ALT 3.4.1.2 S ..................................................................................................... 103 ALT 3.4.2 Joint Performance through DER ............................................................ 105 3.4.2.1 B .................................................................................................... 105 ALT vi 3.4.2.2 S ..................................................................................................... 109 ALT 3.5 CONCLUSIONS .............................................................................................. 116 4.0 MATERIAL PROPERTIES AND LABORATORY TEST PLAN ............ 118 4.1 INTRODUCTION ........................................................................................... 118 4.2 MATERIALS ................................................................................................... 118 4.2.1 Aggregates and Cement ............................................................................ 118 4.2.2 Fibers .......................................................................................................... 120 4.2.2.1 Types .................................................................................................. 120 4.2.2.2 Volume fraction ................................................................................. 122 4.2.3 Concrete Mixture Designs ........................................................................ 124 4.3 CONCRETE MATERIAL PROPERTIES ................................................... 125 4.4 TEST PLAN FOR THE B PROCEDURE ............................................... 128 ALT 4.5 TEST PLAN FOR THE S PROCEDURE ............................................... 137 ALT 4.6 CONCLUSIONS .............................................................................................. 138 5.0 LABORATORY TEST RESULTS AND DISCUSSIONS ........................... 139 5.1 INTRODUCTION ........................................................................................... 139 5.2 PROPERTIES OF CONCRETE MIXTURES ............................................. 140 5.2.1 PC Mixtures ............................................................................................... 140 5.2.2 FRC Mixtures ............................................................................................ 141 5.2.3 Comparison between Mixtures ................................................................ 144 5.3 JOINT PERFORMANCE IN TERMS OF LTE .......................................... 148 5.3.1 Joint Performance through B ............................................................. 150 ALT 5.3.1.1 PC mixture ......................................................................................... 150 5.3.1.2 FRC1 mixture .................................................................................... 158 vii 5.3.1.3 FRC2 mixture .................................................................................... 167 5.3.1.4 Comparison of LTE results between the mixture types .............. 174 B 5.3.1.5 Regression model for LTE .............................................................. 180 B 5.3.2 Joint Performance through S ............................................................. 195 ALT 5.3.2.1 PC mixture ......................................................................................... 195 5.3.2.2 FRC1 mixture .................................................................................... 201 5.3.2.3 FRC2 mixture .................................................................................... 208 5.3.2.4 Comparison of LTE results between the mixture types ............... 213 S 5.3.2.5 Regression model for LTE .............................................................. 216 S 5.3.3 Comparison between LTE vs LTE ....................................................... 231 B S 5.4 JOINT PERFORMANCE IN TERMS OF DER .......................................... 237 5.4.1 B ............................................................................................................ 237 ALT 5.4.1.1 Regression models for DER ............................................................ 242 B 5.4.2 S ............................................................................................................. 254 ALT 5.4.2.1 Regression models for DER ............................................................ 257 S 5.4.3 Relationship between DER vs DER ..................................................... 269 S B 5.5 RELATIONSHIP BETWEEN LTE AND DER ........................................ 272 S B 5.6 RELATIONSHIP BETWEEN DER AND LTE ........................................ 275 S B 5.7 SELECTION OF BEST PROCEDURE TO ESTIMATE LTE ................ 278 S 5.8 RECOMMENDATION FOR NUMBERS OF SPECIMENS IN B TEST ALT ........................................................................................................................... 280 5.9 CONCLUSIONS .............................................................................................. 281 6.0 MODELING OF JOINTS IN BONDED WHITETOPPING ...................... 284 6.1 INTRODUCTION ........................................................................................... 284 viii 6.2 LTE VS AGG* RELATIONSHIP .................................................................. 285 6.2.1 Fully Bonded Cases ................................................................................... 292 6.2.2 Partially Bonded Cases ............................................................................. 294 6.2.2.1 Load transfer contribution by the HMA layer ............................... 303 6.2.2.2 LTE vs AGG* for different whitetopping designs ..................... 306 total 6.2.2.3 Proposed method for determining AGG* for whitetopping design 308 6.3 JOINT PERFORMANCE VS DESIGN STRESS ........................................ 310 6.4 INFLUENCE OF INTERFACE BONDING ON THE DESIGN STRESS 319 6.5 JOINT PERFORMANCE VS INTERFACE DEBONDING STRESS ...... 323 6.6 ADVANTAGES OF FRC MIXTURES OVER PC MIXTURE .................. 329 6.7 CONCLUSIONS .............................................................................................. 331 7.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 335 7.1 INTRODUCTION ........................................................................................... 335 7.2 FINDINGS ........................................................................................................ 335 7.3 RECOMMENDATION FOR FUTURE STUDIES ...................................... 340 APPENDIX A ............................................................................................................................ 341 APPENDIX B ............................................................................................................................ 351 BIBLIOGRAPHY ..................................................................................................................... 358 ix LIST OF TABLES Table 2.1. Summary of the design features for Cells 94, 95 and 96 in MnROAD ....................... 15 Table 2.2. Summary of the design features for Cell 93 at MnROAD .......................................... 20 Table 2.3. Properties of a few structural synthetic fibers and FRC in the Roesler et al. 2008 study. ................................................................................................................................. 57 Table 3.1. Input and FEM modeling features for the concrete slab model. .................................. 73 Table 3.2. Target and calculated LTEs for determination of AF. ................................................. 79 Table 3.3. Magnitude of the maximum deflection and the slope of the deflection profile for different load magnitudes and locations. .......................................................................... 80 Table 3.4. Values of A to A for the load and deflection profiles shown in Figure 3.36 and 1 8 Figure 3.37. ..................................................................................................................... 108 Table 3.5. DE, DED and DER for the load and deflection profiles demonstrated in Figure 3.36 and Figure 3.37. .............................................................................................................. 109 Table 3.6. Values of B to B for the example shown in Figure 3.40. ........................................ 116 1 8 Table 3.7. Cumulative DE, DED and DER for the example shown in Figure 3.40. .................. 116 Table 4.1. Physical characteristics of the coarse aggregates. ..................................................... 119 Table 4.2. Types of fibers used in whitetopping projects constructed in Illinois ....................... 121 Table 4.3. Features of the selected fibers for the present study. ................................................. 122 Table 4.4. Volume fraction and dosages of two selected fibers ................................................. 124 Table 4.5. Target concrete mixture design. ................................................................................. 125 Table 4.6. Test for characterizing concrete properties. ............................................................... 127 Table 4.7. Specimen matrix for B procedure. ........................................................................ 137 ALT x
Description: