Joint communication and computation resources allocation for cloud-empowered future wireless networks Jessica Oueis To cite this version: Jessica Oueis. Joint communication and computation resources allocation for cloud-empowered future wireless networks. Web. Université Grenoble Alpes, 2016. English. NNT: 2016GREAM007. tel- 01366449 HAL Id: tel-01366449 https://theses.hal.science/tel-01366449 Submitted on 14 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE`SE Pourobtenirlegradede DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Spe´cialite´ : Informatique Arreˆte´ ministe´rial:7aouˆt2006 Pre´sente´epar Jessica Oueis The`sedirige´eparAndrzejDuda etcodirige´eparSergioBarbarossa pre´pare´eausein CEA-LETI/DSIS/STCS/LESC-etUMR5217-LIG-Laboratoire d’InformatiquedeGrenoble etdeMSTII Gestion conjointe de ressources de communication et de calcul pour les re´seaux sans fils a` base de cloud The`sesoutenuepubliquementle12Fe´vrier2016, devantlejurycompose´ de: M.,JosepVidal UPCBarcelona,Rapporteur,Pre´sident M.,KeiSakaguchi FraunhoferHHI,TokyoInstituteofTechnology,Rapporteur M.,ValerioFrascolla Intel,Examinateur M.,AndrzejDuda GrenobleINP-Ensimag,Directeurdethe`se M.,SergioBarbarossa Universite´ deRome,LaSapienza,Co-Directeurdethe`se M.,EmilioCalvaneseStrinati CEA-LETI,Grenoble,Co-Encadrantdethe`se Abstract Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to the mobile edge. We adopt a local mobile edge cloud computing ar- chitecture, where small cells are empowered with computational and storage capacities. Mobile users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose the concept of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A first contribution of this thesis is the design of amulti-parameter computation offloading decision algorithm, SM-POD.Theproposed algorithm consistsofaseriesoflowcomplexitysuccessiveandnestedclassifications ofcomputationaltasks atthemobileside, whichleadstoanoffloading decision toeachofthetasks. Thetasks areeither computed locally using the handset resources, or offloaded to the cloud. To reach the offloading decision, SM-POD jointly considers computational tasks, handsets, and communication channel parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up for mobile edge cloud computing for both single-user and multi-user cases. The clustering prob- lemisformulated asanoptimization thatjointlyoptimizesthecomputational andcommunication resource allocation, andthecomputational load distribution onthesmallcellsparticipating inthe computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy efficiency. In the multi-user case, the optimization problem is not con- vex. Inordertocomputeaclusteringsolution,weproposeaconvexreformulationoftheproblem, andweprovethatbothproblemsareequivalent. Withthegoaloffindingalowercomplexityclus- tering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving small cells where tasks are received, as a first step. Then, in a second step, unserved tasks are sent to a small cell managing unit (SCM) that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency. Thesecondproposed heuristic isaniterative approach inwhichserving smallcellscompute their desiredclusters,withoutconsideringthepresenceofotherusers,andsendtheirclusterparameters totheSCM.SCMthenchecks forexcessofresource allocation atanyofthenetworksmallcells. SCMreportsanyloadexcesstoservingsmallcellsthatre-distribute thisloadonlessloadedsmall cells. Whennosmallcellisoverloaded, theSCMvalidates theclusters setupaccordingly. Inthe finalpartofthisthesis,weproposetheconceptofcomputationcachingforedgecloudcomputing. Withtheaimofreducing theedgecloudcomputing latency andenergy consumption, wepropose caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, wepropose acaching algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This algorithm identifies re- queststhat,ifcachedanddownloadedinsteadofbeingre-computed,willincreasethecomputation caching energy and latency savings. Second, we propose a method for setting up a search small cellsclusterforfindingacachedcopyoftherequests computation. Theclustering policyexploits therelationshipbetweentaskspopularityandtheirprobabilityofbeingcached,inordertoidentify i ii ABSTRACT possible locations ofthecachedcopy. Theproposed methodreduces thesearchcluster sizewhile guaranteeing aminimumcachehitprobability. Keywords Mobilecloudcomputing, Localcloud, Edgecloud,Smallcellscluster, Resourceallocation, Com- putation offloading, Computation caching, Loaddistribution List of Publications Journal Papers [J1] J. Oueis, E. Calvanese Strinati, S. Sardellitti, and S. Barbarossa, “Joint Computation and Communication Resource Allocation in Edge Cloud Computing Clusters”to be submitted, 2015. Conference Papers [C1] Oueis, J.; Strinati, E.C.; Barbarossa, S., “Multi-parameter decision algorithm for mobile computationoffloading,”inWirelessCommunicationsandNetworkingConference(WCNC), 2014IEEE,vol.,no.,pp.3005-3010, 6-9April2014 [C2] Oueis, J.; Calvanese-Strinati, E.; De Domenico, A.; Barbarossa, S., “On the impact of backhaul network on distributed cloud computing,” in Wireless Communications and Net- working Conference Workshops (WCNCW), 2014 IEEE , vol., no., pp.12-17, 6-9 April 2014 [C3] Oueis,J.;Strinati,E.C.;Barbarossa,S.,“Smallcellclustering forefficientdistributed cloud computing,” in Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25thAnnualInternational Symposiumon,vol.,no.,pp.1474-1479, 2-5Sept. 2014 [C4] Oueis, J.; Strinati, E.C.; Barbarossa, S., “The Fog Balancing: Load Distribution for Small Cell Cloud Computing,” in Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st,vol.,no.,pp.1-6,11-14May2015 [C5] Oueis, J.; Strinati, E.C.; Sardellitti, S.; Barbarossa, S., “Small Cell Clustering for Effi- cientDistributedFogComputing: AMulti-userCase,”inVehicularTechnologyConference (VTCFall),2015IEEE82nd,vol.,no.,pp.,Sept. 2015 [C6] Oueis, J.; Strinati, E.C.; Barbarossa, S., “Distributed Mobile Cloud Computing: A Multi- user Clustering Solution,” submitted to the International Conference on Communications (ICC),2016IEEE,23-27May,2016 [C7] Oueis, J.; Strinati, E.C.; Barbarossa, S., “Energy Aware Computation caching on the Edge cloud,”tobesubmitted, 2015. [C8] Oueis, J.; Strinati, E.C.;Barbarossa, S.,“Uplink Trafficinfuture mobile networks: pulling thealarm,”submittedtoCROWNCOM2016. iii iv LISTOFPUBLICATIONS Patents [P1] J. Oueis, E.Calvanese Strinati, andA.DeDomenico, “Method forModifying TheStateof LocalAccessPointsinaCellularNetwork,”US20140220994, EP2763469A1. [P2] J.Oueis,E.CalvaneseStrinati,andS.Barbarossa,“MethodforOffloadingtheExecutionof Computation TasksofaWirelessEquipment,”DD14763SP. [P3] J. Oueis, and E. Calvanese Strinati, “Method, Devices and System for Cloud Constitution WithSignalResponseTime,”DD15918SP. [P4] J.Oueis,andE.CalvaneseStrinati,“Methodfordistributed LocalCloudClusterFormation withMultiplejointCommunication andComputingUErequests,” DD16683SP. [P5] J. Oueis, and E. Calvanese Strinati, “Caching and Fog Distributed Clustering Offloading,” DD16782SP. Contents Abstract i ListofPublications iii Contents v ListofFigures ix ListofTables xi AbbreviationsandAcronyms xiii IntroductionandThesisOutline 1 1 TheEvolutionofCloudEnableMobileWireless Networks 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 5GCellular: TheFutureofMobileNetworks . . . . . . . . . . . . . . . . . . . 9 1.2.1 5G:DesignEssentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 5GRequirements andEnablingTechnologies . . . . . . . . . . . . . . . 10 1.2.2.1 5GRequirements andCapabilities . . . . . . . . . . . . . . . 10 1.2.2.2 5GEnablingTechnologies . . . . . . . . . . . . . . . . . . . 12 1.3 CloudTechnologies andNetworkArchitecture: AJointEvolution . . . . . . . . 18 1.3.1 CloudComputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.1.1 DefinitionandCharacteristics . . . . . . . . . . . . . . . . . . 18 1.3.1.2 ServiceandDeployment Models . . . . . . . . . . . . . . . . 19 1.3.1.3 CloudComputingEnablers . . . . . . . . . . . . . . . . . . . 20 1.3.2 CloudTechnologies inCellularNetworks . . . . . . . . . . . . . . . . . 20 1.3.2.1 ClassicBaseStationArchitecture . . . . . . . . . . . . . . . . 21 1.3.2.2 CloudRadioAccessNetwork(C-RAN) . . . . . . . . . . . . 22 1.3.2.3 MobileCloudComputing: RemoteClouds . . . . . . . . . . . 23 1.3.2.4 MobileCloudComputing: Cloudlets . . . . . . . . . . . . . . 27 1.3.2.5 MobileEdgeComputing . . . . . . . . . . . . . . . . . . . . 28 1.3.3 FogComputing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.4 UplinkTrafficinFutureMobileNetworks: PullingtheAlarm . . . . . . . . . . . 33 1.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.2 WhyUplinkTrafficisGrowing . . . . . . . . . . . . . . . . . . . . . . 34 1.4.2.1 Increase inNumberofMobileSubscribersandDevices . . . . 34 v vi CONTENTS 1.4.2.2 Evolution ofCellularNetworks . . . . . . . . . . . . . . . . . 34 1.4.2.3 Emergence of Cloud Technologies and Dense Heterogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.4.2.4 NewApplications andServicesEcosystem . . . . . . . . . . . 36 1.4.2.5 CrowdedNetworksScenarios . . . . . . . . . . . . . . . . . . 37 1.4.2.6 SensorandMTCNetworks . . . . . . . . . . . . . . . . . . . 37 1.4.3 UplinkImprovementRelatedWork . . . . . . . . . . . . . . . . . . . . 38 1.4.3.1 RangeExtensioninHeterogeneous Networks . . . . . . . . . 38 1.4.3.2 DownlinkandUplinkDecoupling . . . . . . . . . . . . . . . . 39 1.4.3.3 UplinkCoMPTechniques . . . . . . . . . . . . . . . . . . . . 39 1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 EdgeCloudClusterComputing: ChallengesandTrade-offs 43 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 SmallCellsEdgeComputing . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.2 Computation offloading . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Computation SmallCellsCluster . . . . . . . . . . . . . . . . . . . . . 46 2.3 PreliminaryonCommunication Trade-offsinHeterogeneous Networks . . . . . 49 2.4 AdvancedMECtrade-offs: JointCommunication andComputation . . . . . . . 51 2.4.1 Computation OffloadingTrade-offs . . . . . . . . . . . . . . . . . . . . 51 2.4.2 SmallCellCloudClusteringTrade-offs . . . . . . . . . . . . . . . . . . 52 2.4.3 LocalComputingvsComputationOffloading . . . . . . . . . . . . . . . 56 2.4.4 Performance andEnergySavings . . . . . . . . . . . . . . . . . . . . . 56 2.4.5 SystemEnergyEfficiency,CellsDensity,andEMFExposure . . . . . . . 58 2.4.6 SmallCellClusterCloud . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.5 Extending theImpactofBackhaulNetworkonSmallCellCloudComputing . . . 61 2.5.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.5.2 LatencyModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5.2.1 FullMeshTopology . . . . . . . . . . . . . . . . . . . . . . . 63 2.5.2.2 WirelessLTEBackhaul . . . . . . . . . . . . . . . . . . . . . 63 2.5.2.3 TreeTopology . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.5.2.4 RingTopology . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5.3 PowerConsumption Models . . . . . . . . . . . . . . . . . . . . . . . . 65 2.5.3.1 WirelessLTEBackhaul . . . . . . . . . . . . . . . . . . . . . 65 2.5.3.2 FiberBackhaul . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.5.3.3 Ringtopology . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.5.3.4 MicrowaveBackhaul . . . . . . . . . . . . . . . . . . . . . . 66 2.6 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.6.1 ClusterLatency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.6.2 ClusterCommunicationPowerConsumption . . . . . . . . . . . . . . . 69 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 Multi-parameterComputationOffloadingDecision 71 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 CONTENTS vii 3.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 Proposed OffloadingDecisionAlgorithm: SM-POD . . . . . . . . . . . . . . . . 77 3.5 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 SmallCellsClusteringforMEC:FromSingle-usertoMulti-user 87 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3 Single-user Multi-cloud UseCase . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.1 ProblemStatement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.2 LatencyMinimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.3.3 ClusterSparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.4 Minimization ofClusterPowerConsumption . . . . . . . . . . . . . . . 99 4.3.5 Minimization ofSmallCellSelfishPowerConsumption . . . . . . . . . 102 4.3.6 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4 Multi-user Multi-cloud UseCase . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4.1 Multi-user ClusteringOptimization . . . . . . . . . . . . . . . . . . . . 105 4.4.2 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 SmallCellsClusteringApproachesforMEC 113 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3 SmallCellCloudClustering: AScheduling Approach . . . . . . . . . . . . . . . 117 5.3.1 GeneralAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.2 Algorithm Implementations . . . . . . . . . . . . . . . . . . . . . . . . 118 5.4 SmallCellCloudClustering: AnIterativeApproach . . . . . . . . . . . . . . . . 119 5.5 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6 ComputationCachinginCluster-basedCloudComputing 129 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3 SystemModelandNotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.4 Computation CachingforEdgeComputing . . . . . . . . . . . . . . . . . . . . 134 6.5 Proposed CachingAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.6 CachingAlgorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.7 SearchClusterSparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Description: