ebook img

Jet fragmentation and predictions of the resummed perturbative QCD PDF

115 Pages·2001·4.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jet fragmentation and predictions of the resummed perturbative QCD

JETFRAGMENTATIONANDPREDICTIONSOFTHERESUMMED PERTURBATIVEQCD By ALEXEIN.SAFONOV ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2001 Tomyparents,LudmilaDmitriyevnaandNikolaySergeyevichSafonov. ACKNOWLEDGMENTS Most ofall, I am very grateful to Prof. Audrey Korytov, the chair ofthe dissertationcommittee,forhisinvaluablecontributiontothesuccessfulcompletionof thisdissertation.Dr.Korytov’sdesiretosharehisexperienceandgenuinededicationto physicswerethekeyfactorsthatdefinedtheoutcomeofthiswork. IamverythankfultoProf.GuenakhMitselmakherforhisadvice,helpandmany hoursofveryusefuldiscussions. IwouldliketothankDr.JoeyHuston(MichiganStateUniversity),Dr.Valery Khoze (Durham University, UK), Dr. Steve Kuhlmaim (ArgonNational Accelerator Laboratory),Dr.AviYagil(FermiNationalAcceleratorLaboratory)fortheirhelpand usefulsuggestionsthatwereveryimportantatdifferentstagesofthiswork I appreciate the opportunity 1 had to work and collaboratewith Dr. Serguei Klimenko (University ofFlorida), Dr. Jaco Konigsberg (University ofFlorida), Dr. AndreiNomerotski(Fermilab)andmanyotherpeopleworkingattheCDFExperiment, whocontributedintothesuccessfulcompletionofthisdissertation. IamthankfultpBenKilminster(UniversityofRochester)andSlavaKrutelyov (Texas A&M University) for carefully reading the manuscript and their helpful suggestions. DuringmystudyattheUniversityofFlorida,Iverymuchenjoyedthelecturesof ZonganQiu,CharlesHooperandCharlesThom,andIbelievethatthosewerealarge factorinthesuccessfulcompletionofthiswork. iii 01 TABLEOFCONTENTS page ACKNOWLEDGMENTS iii ABSTRACT vii CHAPTERS 1 QUANTUMCHROMODYNAMICSANDJETFRAGMENTATION 1 11..12 PReerstuurmbmateidveQQCCDDCalculationsandApplicabilityforJetFragmentation 42 1.2.1 ModifiedLeadingLogApproximation(MLLA) 6 1.2.2 LocalParton-HadronDualityHypothesis(LPHD) 9 1.3 MLLAPredictions 10 1.3.1 MomentumDistributionofPartonsinJets 1 1.3.2 MeanChargedParticleMultiplicity 1 1.3.3 OnDifferencesBetweenQuarkandGluonJets 12 1.3.4 Next-to-MLLACorrections 13 2 EARLYEXPERIMENTALRESULTSANDMOTIVATION 15 3 CDFATFERMILAB:EXPERIMENTALFACILITYOVERVIEW 17 3.1 ColliderDetectorsinHighEnergyPhysics 18 3.2 ColliderDetectoratFermilab:DesignandOverview 19 3.2.1 VertexDetectors(VTPCandSVX) 20 3.2.2 CentralTrackingChamber(CTC) 21 3.2.3 ElectromagneticandHadronicCalorimeters 22 3.2.4 OtherSub-Detectors 23 3.3 CDFDataReadoutandProcessing 24 4 DATAANALYSISTOOLS 26 4.1 Monte-CarloEventGenerators 26 4.2 DetectorSimulation 28 5 FEASIBILITYOFTHEJETFRAGMENTATIONSTUDIESATCDF 30 IV 6 DATASELECTION,CORRECTIONSANDERRORESTIMATES 33 6.1 DataSelectionandQualityCuts 33 6.2 CorrectionstotheData 36 6.2.1 JetCorrections 36 6.2.2 TrackingCorrections 39 6.3 SystematicUncertaintiesandMethodsofEvaluation 42 6.3.1 SystematicsAssociatedwiththeCalorimetry 43 6.3.2 SystematicsAssociatedwiththeTracking 47 7 RESULTSANDCOMPARISONSTOTHEPREDICTIONSOFTHEMODIFIED LEADINGLOGAPPROXIMATION(MLLA) 48 7.1 MeasurementoftheMomentumDistributionofChargedParticlesinJets 49 7.1.1 FitsoftheDistributionswiththeMLLALimitingSpectrum 49 7.1.2 gg^fromtheMLLAFit 54 7.1.3 FitforthePeakPositionoftheDistributions.MLLAScaling. ExtractionofQg^ 55 7.1.4 DependenceoftheFittedParameterKontheSizeoftheCone 57 7.1.5 ExtractionoftheLPHDParameter andtheRatioof MultiplicitiesinGluonandQuarkJetsr 59 7.1.6 Summary 61 7.2 MeasurementoftheInclusiveChargedParticleMultiplicity.Comparisons totheMLLAPredictions.ExtractionoftheRatiorandLPHDParameter KfSir' 62 7.3 ComparisonofthePhoton+JetandtheDijetData.Model-independent MeasurementoftheRatioofMultiplicitiesinGluonandQuarkJetsr 66 7.4 ParticlePropertiesinJetsandComparisonstoHerwigMonte-Carlo 69 7.4.1 MeanChargedMultiplicity 70 7.4.2 Distribution 72 7.4.3 dN/d(logp)MomentumDistribution 74 7.4.4 MultiplicityFlowdN/d% 76 7.5 Conclusions 77 8 SUMMARYOFTHEEXPERIMENTALRESULTSANDTHEIRIMPACTON UNDERSTANDINGOFJETFRAGMENTATION.FUTUREPERSPECTIVES 79 APPENDIX ANALYSISOFTHECENTRALTRACKINGCHAMBER(CTC) RECONSTRUCTIONEFFICIENCIES 83 TrackEmbeddingMethodandMonte-CarloTesting 84 Track-FindingAlgorithm 88 ResultsandCross-Checks 93 ConclusionAndLimitsofApplicability 98 V LISTOFREFERENCES 100 BIOGRAPHICALSKETCH 105 VI AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy JETFRAGMENTATIONANDPREDICTIONSOFTHERESUMMED PERTURBATIVEQCD By AlexeiN.Safonov May2001 Chairman: AndreyKorytov MajorDepartment: DepartmentofPhysics Thisdissertationisdedicatedtotheexperimentalanalysisofjetfragmentation,the processofformationofjetsofparticlesproducedinhigh-energycollisions,andtothe comparisonoftheresultstothepredictionsofresummedperturbativecalculationswithin QuantumChromodynamics. DatausedinthisanalysiswereobtainedbytheCollider DetectoratFermilab(CDF)Experimentinproton-antiprotoncollisionswiththecenter- of-massenergy1.8TeVproducedbytheTevatroncollideratFermiNationalAccelerator Laboratory. Jetfragmentation,becauseofitssoftness(typicaltransversemomentaofparticles injetswithrespecttothejetaxisis200-300MeV),waslongconsideredasanessentially non-perturbative,andthusincalculable,QCDprocess.Recentcalculationsperformedin theframeworkofModifiedLeadingLogApproximation(MLLA)havemadeanattempt vii toexpandtheperturbativedomaintoincludethefragmentationphenomenon.Validityof theMLLAapproachcanonlybeverifiedexperimentally. Early experimental measurements have shown a good qualitative agreement betweenthe lowerenergydataandthe MLLApredictions. However, someofthese resultsappearedtocontradicteachother. Studiespresentedinthisworksignificantlyexpandtheareaofthefragmentation studiesbyanalyzingamuchwiderrangeofjetenergies,reachingfarbeyondwhatcould beachievedate+e-colliders.Theyalsoprovideagoodtestinggroundfortheuniversality ofthejetpropertiesate+e-andhadroncollisions.ImportantMLLApredictionsofscaling werestudiedforthefirsttimeandfoundtobesupportedbythedata. Theanalysispresentedinthisworkshowsahighlevelofconsistencybetweenthe data and the MLLA predictions. This proves that thejet fragmentation is largely a perturbativeprocess inagreementwiththeassumptionsthatarethebasisofMLLA. Essentialmodelparametersareextractedandextensivecrosschecksofthemodelself- consistencywereperformed. viii CHAPTER1 QUANTUMCHROMODYNAMICSANDJETFRAGMENTATION Forthe last30years, therehasbeenanagreementthatallthematterofthe Universeisbuiltoffermions(leptonsandquarks)thatinteractwitheachotherviathe vector boson exchange. These interactions are described by gauge theories, and to properly describe a particular interaction, one needs to find an appropriate gauge symmetryandaparticularrepresentationofthetheory. Allleptonsaredividedintothreegenerations:thefirstgenerationconsistsofthe electronandelectronneutrino(e‘andVg),thesecondofthemuonandmuonneutrino(|ir andv^),andthethirdofthetauandtauneutrino(Tandv-^).Thesameistrueforquarks: thefirstgenerationofquarksconsistsofuandd-quarks,thesecondofc-ands-quarks, andthethirdoft-andb-quarks. Threeknownkindsofinteractions,apartfromgravitation,areelectromagnetic, weakandstronginteractions. Electromagneticinteractioninvolveselectricallycharged particles(allfermionsexceptneutrinos)andthecorrespondingexchangebosonisphoton (Y). The weak interaction is responsible for the well-known radioactive beta decay processesandinvolvesallfermionsmentionedabove;theweakinteractionismediated bythreebosons:W+,W-andZ.Thestronginteractionistheinteractionbetweenthe nucleiconstituents(quarksandgluons)andisresponsibleforkeepingnucleiconstituents together.Thestronginteractioninvolvesallquarksandismediatedbygluons(thereare8 differentspeciesofgluons). 1 2 Theelectromagneticandweakinteractionsaretheoldestknowninteractionsand arethebeststudiedandunderstood.TheStandardModelofElectroweakInteractions[1] definesthedynamicsofboththeparticipatingparticlesandtheexchangevectorbosons. Itallowsthecalculationofcross-sectionsofdifferentprocesseswithahighprecision (sometimesitrequiressophisticatedcalculations,butthereisawell-definedsystematic procedureofperforming suchcalculations).The StandardModelistestedinvarious experimental studies and shows averyhighlevelofconsistencywiththedata, even thoughthelastparticlecomprisingtheStandardModel,theHiggsbosonresponsiblefor generationofparticlemasses,hasnotyetbeenformd.Theexperimentalfindingofthe Higgsbosonisoneofthemostimportantdiscoveriesyettobemadebythehigh-energy physics,andalotofeffortandresourcesareappliedinthisdirection. Thestronginteractionisstrikinglydifferentfi'omtheelectromagneticandweak forcesbecauseits strengthbecomeslargerandgrowsveryquicklywiththedistance betweentheinteractingquarks,whileitalmostdisappearswhenthedistancebecomes small. This effect is called asymptotic fi’eedom. Both electromagnetic and weak interactionsshowdifferentbehavior:theirstrengthrapidlyfallswithdistance. 1.1 PerturbativeQCD Earlyexperimentsofproton-protonscattering [2] showingalowrateatlarge scatteringangleswereinterpretedtosuggestthattheprotonconsistsofanensembleof looselyboundedcloudofnon-interactingconstituents incapableofabsorbing alarge momentumtransfer.However,laterdeep-inelasticscattering(scatteringofanelectronon a proton) studies [3] have shown a substantial rate of high momentum-transfer

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.