ebook img

Jacaranda Maths Quest Units 1&2 Mathematical Methods 11 for Queensland PDF

768 Pages·2018·20.924 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jacaranda Maths Quest Units 1&2 Mathematical Methods 11 for Queensland

JACARANDA MATHS QUEST UNITS MATHEMATICAL 11 1& 2 METHODS FOR QUEENSLAND KAHNI BURROWS | SUE MICHELL | MILES FORD CONTRIBUTING AUTHORS Renée Gordon | Shirley Sharpley | Matthew Mack | Libby Kempton Steven Morris | Raymond Rozen | Margaret Swale Firstpublished2018by JohnWiley&SonsAustralia,Ltd 42McDougallStreet,Milton,Qld4064 Typesetin11/14ptTimesLTStd ©JohnWiley&SonsAustralia,Ltd2018 Themoralrightsoftheauthorshavebeenasserted. ISBN:978-0-7303-5711-7 Reproductionandcommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumofonechapteror10%ofthepagesofthiswork,whicheveristhe greater,tobereproducedand/orcommunicatedbyanyeducationalinstitutionforitseducationalpurposesprovidedthatthe educationalinstitution(orthebodythatadministersit)hasgivenaremunerationnoticetoCopyrightAgencyLimited(CAL). Reproductionandcommunicationforotherpurposes ExceptaspermittedundertheAct(forexample,afairdealingforthepurposesofstudy,research,criticismorreview),nopartofthis bookmaybereproduced,storedinaretrievalsystem,communicatedortransmittedinanyformorbyanymeanswithoutprior writtenpermission.Allinquiriesshouldbemadetothepublisher. Trademarks Jacaranda,theJacPLUSlogo,thelearnON,assessONandstudyONlogos,WileyandtheWileylogo,andanyrelatedtradedressare trademarksorregisteredtrademarksofJohnWiley&SonsInc.and/oritsaffiliatesintheUnitedStates,Australiaandinother countries,andmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. Frontcoverimage:©antishock/Shutterstock Illustratedbyvariousartists,diacriTechandWileyCompositionServices TypesetinIndiabydiacriTech PrintedinSingaporeby MarkonoPrintMediaPteLtd 10 9 8 7 6 5 4 3 2 1 CONTENTS Aboutthisresource................................................................................................................................................................................................. ix AbouteBookPLUSandstudyON....................................................................................................................................................................... xii Acknowledgements................................................................................................................................................................................................. xiii UNIT 1 ALGEBRA, STATISTICS AND FUNCTIONS 1 TOPIC 1 Arithmetic and geometric sequences and series 1 1 Arithmetic sequences 1 1.1 Overview...................................................................................................................................................................................... 1 1.2 Arithmeticsequences............................................................................................................................................................. 2 1.3 Thegeneralformofanarithmeticsequence................................................................................................................. 8 1.4 Thesumofanarithmeticsequence.................................................................................................................................. 15 1.5 Applicationsofarithmeticsequences.............................................................................................................................. 19 1.6 Review:exampractice........................................................................................................................................................... 26 Answers................................................................................................................................................................................................... 29 REVISION UNIT 1 TOPIC 1 Chapter 1 ......................................................................................................................................... 31 TOPIC 2 Functions and graphs 2 Functions 32 2.1 Overview...................................................................................................................................................................................... 32 2.2 Functionsandrelations.......................................................................................................................................................... 33 2.3 Functionnotation...................................................................................................................................................................... 44 2.4 Transformationsoffunctions............................................................................................................................................... 53 2.5 Piece-wisefunctions............................................................................................................................................................... 62 2.6 Review:exampractice........................................................................................................................................................... 74 Answers................................................................................................................................................................................................... 80 3 Quadratic relationships 89 3.1 Overview...................................................................................................................................................................................... 89 3.2 Graphsofquadraticfunctions............................................................................................................................................ 90 3.3 Solvingquadraticequationswithrationalroots...........................................................................................................103 3.4 FactorisingandsolvingquadraticsoverR.....................................................................................................................109 3.5 Thediscriminant.......................................................................................................................................................................116 3.6 Modellingwithquadraticfunctions...................................................................................................................................126 3.7 Review:exampractice...........................................................................................................................................................134 Answers...................................................................................................................................................................................................138 4 Inverse proportions and graphs of relations 145 4.1 Overview......................................................................................................................................................................................145 4.2 Thehyperbola............................................................................................................................................................................146 4.3 Inverseproportion....................................................................................................................................................................157 4.4 Thecircle.....................................................................................................................................................................................162 4.5 Thesidewaysparabola..........................................................................................................................................................170 4.6 Review:exampractice...........................................................................................................................................................178 Answers...................................................................................................................................................................................................182 5 Powers and polynomials 191 5.1 Overview......................................................................................................................................................................................191 5.2 Polynomials................................................................................................................................................................................192 5.3 Graphsofcubicpolynomials...............................................................................................................................................203 5.4 Thefactorandremaindertheorems.................................................................................................................................217 5.5 Solvingcubicequations........................................................................................................................................................224 5.6 Cubicmodelsandapplications..........................................................................................................................................229 5.7 Graphsofquarticpolynomials............................................................................................................................................235 5.8 Solvingpolynomialequations.............................................................................................................................................242 5.9 Review:exampractice...........................................................................................................................................................250 Answers...................................................................................................................................................................................................254 REVISION UNIT 1 TOPIC 2 Chapters 2 to 5 .............................................................................................................................270 PRACTICE ASSESSMENT 1 Problem solving and modelling task: Functions and graphs ................................271 TOPIC 3 Counting and probability 6 Counting and probability 274 6.1 Overview......................................................................................................................................................................................274 6.2 Fundamentalsofprobability................................................................................................................................................275 6.3 Relativefrequency...................................................................................................................................................................286 6.4 Conditionalprobability...........................................................................................................................................................290 6.5 Independence............................................................................................................................................................................299 6.6 Permutationsandcombinations........................................................................................................................................305 6.7 Pascal’striangleandbinomialexpansions....................................................................................................................319 6.8 Review:exampractice...........................................................................................................................................................329 Answers...................................................................................................................................................................................................332 REVISION UNIT 1 TOPIC 3 Chapter 6 .........................................................................................................................................336 iv CONTENTS TOPIC 4 Exponential functions 1 7 Indices 337 7.1 Overview......................................................................................................................................................................................337 7.2 Indexlaws...................................................................................................................................................................................338 7.3 Negativeandrationalindices..............................................................................................................................................343 7.4 Indicialequationsandscientificnotation.......................................................................................................................348 7.5 Review:exampractice...........................................................................................................................................................354 Answers...................................................................................................................................................................................................356 REVISION UNIT 1 TOPIC 4 Chapter 7 .........................................................................................................................................358 TOPIC 5 Arithmetic and geometric sequences and series 2 8 Geometric sequences 359 8.1 Overview......................................................................................................................................................................................359 8.2 Recursivedefinitionandthegeneraltermofgeometricsequences...................................................................360 8.3 Thesumofageometricsequence....................................................................................................................................371 8.4 Geometricsequencesincontext.......................................................................................................................................378 8.5 Review:exampractice...........................................................................................................................................................384 Answers...................................................................................................................................................................................................387 REVISION UNIT 1 TOPIC 5 Chapter 8 .........................................................................................................................................389 PRACTICE ASSESSMENT 2 Unit 1 internal examination .....................................................................................................390 UNIT 2 CALCULUS AND FURTHER FUNCTIONS 399 TOPIC 1 The logarithmic function 1 TOPIC 2 Exponential functions 2 9 Exponential and logarithmic functions 399 9.1 Overview......................................................................................................................................................................................399 9.2 Exponentialfunctions.............................................................................................................................................................400 9.3 Logarithmicfunctions.............................................................................................................................................................410 9.4 Modellingwithexponentialfunctions...............................................................................................................................423 9.5 Solvingequationswithindices...........................................................................................................................................432 9.6 Review:exampractice...........................................................................................................................................................438 Answers...................................................................................................................................................................................................442 CONTENTS v REVISION UNIT 2 TOPIC 1 AND 2 Chapter 9 .........................................................................................................................................449 TOPIC 3 Trigonometric functions 1 10 Trigonometric functions 450 10.1 Overview......................................................................................................................................................................................450 10.2 Trigonometryreview................................................................................................................................................................451 10.3 Radianmeasure........................................................................................................................................................................459 10.4 Unitcircledefinitions...............................................................................................................................................................469 10.5 Exactvaluesandsymmetryproperties...........................................................................................................................480 10.6 Graphsofthesine,cosineandtangentfunctions......................................................................................................490 10.7 Transformationsofsineandcosinegraphs...................................................................................................................499 10.8 Solvingtrigonometricequations........................................................................................................................................513 10.9 Modellingwithtrigonometricfunctions...........................................................................................................................524 10.10 Review:exampractice...........................................................................................................................................................531 Answers...................................................................................................................................................................................................536 REVISION UNIT 2 TOPIC 3 Chapter 10 .....................................................................................................................................550 TOPIC 4 Introduction to differential calculus 11 Rates of change 551 11.1 Overview......................................................................................................................................................................................551 11.2 Exploringratesofchange.....................................................................................................................................................552 11.3 Thedifferencequotient..........................................................................................................................................................561 11.4 Differentiatingsimplefunctions..........................................................................................................................................567 11.5 Interpretingthederivative.....................................................................................................................................................570 11.6 Review:exampractice...........................................................................................................................................................576 Answers...................................................................................................................................................................................................580 12 Properties and applications of derivatives 584 12.1 Overview......................................................................................................................................................................................584 12.2 Differentiationbyformula......................................................................................................................................................585 12.3 Thederivativeasafunction.................................................................................................................................................589 12.4 Propertiesofthederivative...................................................................................................................................................595 12.5 Differentiationofpowerandpolynomialfunctions.....................................................................................................599 12.6 Review:exampractice...........................................................................................................................................................604 Answers....................................................................................................................................................................................................607 vi CONTENTS 13 Applications of derivatives 611 13.1 Overview......................................................................................................................................................................................611 13.2 Gradientandequationofatangent..................................................................................................................................612 13.3 Displacement–timegraphs...................................................................................................................................................620 13.4 Sketchingcurvesusingderivatives...................................................................................................................................629 13.5 Modellingoptimisationproblems.......................................................................................................................................643 13.6 Review:exampractice...........................................................................................................................................................648 Answers....................................................................................................................................................................................................651 REVISION UNIT 2 TOPIC 4 Chapters 11 to 13 ........................................................................................................................656 TOPIC 5 Further differentiation and applications 1 14 Differentiation rules 657 14.1 Overview......................................................................................................................................................................................657 14.2 Theproductrule........................................................................................................................................................................658 14.3 Thequotientrule.......................................................................................................................................................................660 14.4 Thechainrule.............................................................................................................................................................................666 14.5 Applicationsoftheproduct,quotientandchainrules..............................................................................................672 14.6 Review:exampractice...........................................................................................................................................................674 Answers....................................................................................................................................................................................................677 REVISION UNIT 2 TOPIC 5 Chapter 14 ......................................................................................................................................682 TOPIC 6 Discrete random variables 1 15 Discrete random variables 1 683 15.1 Overview......................................................................................................................................................................................683 15.2 Discreterandomvariables....................................................................................................................................................684 15.3 Expectedvalues........................................................................................................................................................................695 15.4 Varianceandstandarddeviation........................................................................................................................................704 15.5 Applicationsofdiscreterandomvariables.....................................................................................................................712 15.6 Review:exampractice...........................................................................................................................................................718 Answers....................................................................................................................................................................................................723 REVISION UNIT 2 TOPIC 6 Chapter 15 ......................................................................................................................................727 CONTENTS vii PRACTICE ASSESSMENT 3 Unit 2 internal examination .....................................................................................................728 PRACTICE ASSESSMENT 4 Units 1 and 2 internal examination .....................................................................................735 Glossary...................................................................................................................................................................................................................... 743 Index............................................................................................................................................................................................................................. 750 viii CONTENTS ABOUT THIS RESOURCE JacarandaMathsQuest11MathematicalMethodsUnits1&2forQueenslandisexpertlytailoredtoaddress comprehensively the intent and structure of the new syllabus. The Jacaranda Maths Quest for Queensland series provides easy-to-follow text and is supported by a bank of resources for both teachers and students. AtJacarandawebelievethateverystudentshouldexperiencesuccessandbuildconfidence,whilethosewho wanttobechallengedaresupportedastheyprogresstomoredifficultconceptsandquestions. expresstheirgreatestproductintermsofk arethereanyvaluesofkforwhichthesumofthesquaresofthenumbersandtheirproductare Preparing students for exam success wcyao.h=uerr1teo2iflt+ewn2agst2hhxi1−t8a0nmd2exyt2re(wms.heTetrhreeesx)pai(smthtehoterfevtshe)reitsibcatahlllehcheaoingrhibzteotnchoteanlbsdaidlilsetrraeenadccethoetrsba.eveplalretdobfyyt=htehaep(abxraa−lblofbrl)oa2m+c. Ecovenrcylu cdheasp wteirt h exam “c01Arithmeticequences”—2018/7/17—12:43—page1—#1 bc..Thenetis243metreshighandisplacedinthecentreoftheplayingcourt. practice questions Chapter openers familiar, Complex pinl arceea l-mwaotrhldem atics 1.equxyatTT==iohhn(2eex,ospx−foa=lrt4uha)tbe−i2ooi1+mlnasa3wogfietthihsee:xqe=uqautai,otxino=ny−(=x1x−y22=is)((txrxa+−xns1=3l)a)−t2=e+d4,s4xaor=eth:1atitsimaxg=eh3a,sxyi=t=s−v(xe2r+tex4)a2t+(−34,3).The fuanmfailmiairl iaanr.d Complex ceFonRgnEtaEeg xaetcmsc teeons tds.r tivoe fttmF1iirofio.abyn1mnoions.pae1faunqcelucvaeieteaennrslcteyaheqnesaudmgeaenolacdl—soedw.npnesTeuerhmduhiesasbdpest.sroestqh—iuenefeaneancrrdelciceteaosrktntaebtiisenniutnhpegertotohnpeaeemnrrteciecoeosuognfantenai-rnd 5.theyyyyyyyy-TTA=======ahhx(−(qx0x0eeixxsu22me1a++a+−qxx8dtau22r3(x22yaax+−))ixxtt(2=m+iix−−ocxx−u−n+g−−m224)1ro4412a110fv0p22.ta)hhIltuets4oepeuoaqcrfuha4aebtsyo−iolt=ahn2e1xsihs8x−:o-xawx2x2n−isiis1sa::0tx3=− y=18(–x71+–6–)25–4–3–2–––11–105550y123(3,4 –45.5)x Tsawestsose csosof mmprepanlcettstiec e sse—ettxvuu eaiddsrmyyy i, On tprictNerllaevu c—.ids tseii octdouenu d wtrayo inOtohdlN tc(wtwhoeiernodtwenupsairrpdieterutvehsriaaoitdtl1ouh,swah1apteos,epi2rrbgllm,ideh3ce.sta,)n:tFior,oiefb8ncro,oe1ingnc3atn“,camic2cns0i1aeg2t,dlnhe3Futes4humm,tanhbtacatestti,iorcosa8msnp9,desp,be”1esusa4hct—l4arptpiobeeers2thh0apaer1apee8tstym/e7mero/n2iorsse3re1ian+—pf2√apnme8aa:to0l1uiu3rn(segaly—pst,hpupbarconehaxcgoiaaemtushsae7tetrh0esetl.hy—Tse1thyreu#acrr31ateu9)ti.rwoeTiohdofiefshlysereaigoatihsbohtseeitsolrlvcswe,adildtlhetihnde PUnRitACTICE6.Aacac....Sxy(yxS===2+Ex2x2(41−xxS+)2.2−2xS−3−+)7M(2(9xx+2E+1N)4)T−81=0 bdb...23yx+=2√=1−x3x(=(xx+2−x22))2+1 Quadraticrelationships mgfasoenuortdi d dsf oeateulr lilq dnetueeedaans orc t—a nhrne e QtvarinsiC ss eiAeodtAn allows you to revise twoconsecutivenumbersapproachesthegoldenratio. Topic — are included. at the concept, Exemplary responses chapter, curriculum and worked solutions topic or unit level. Each subtopic 1.aTT.hheeThgsCueemongenror–saaf11ilpydafheon0rrwamtr1hihtoheifcm2fahoentlcilacxoorirwstrheeimqncuegteltyinpccirseeeecpqeru-eewsneicsneetsfuthni–cs(11xt0yfi)ou=nn:c1tio−xn2,xisx:xx<11 –110y 1 x ciscnpoatlermceruapnldeuatstteohrreet1p5.ro.ag.raFfmuonrcmtioanr(.u–1le, 0f)ory0th(e0,g 1(r1)a, p0h)ofthexpiece-wise b.Ffuonrcmtiothne.ruleforyth(0e, g3r)aphofthe(p4i,e 6c)e-wise atCerheaa cpphrteoervrs i.dq eude sftoior ns ccTTeeoaccrnehhcfnnluuooldlyllooe gggsryy wa fadirtceehted iv aen d b.TheAra–nc11g0yoentoinf1uthoiussppxieieccee--wwi1siseefluinncetairognriasp:–h110yis(c−o11nstrucxtedfromthe0followinglineargrap+hs. c.iscontinuousforx aandbsot(hxa)t=thefaxbu,,+nc2ti,onxxxwith((−3th3e,3yr)u)=l3e(x).0 (2, 0) x aaMKnreeadn ra zdalaaicgnltlno’isve iatdtiane xwdso itnho my questions. yy==−x+3x1−,x3,xaa d.Ithneasnheofwfoerrt,taomreodtuhceeritnhterotidmuceehdearpcehniladlrtyenscshpeemndein of cognitive ba.. a. moneyaccordingtothefollowing: process — retrieval, Considerthefollowinglineargraphsthatmakeupapiece-wiselineargraph. y=2x−3,x a comprehension, y=3x−4,a x b a. xy=x−12,x b benear. analysis and Features of theE1.baa... cCIe4nqxiaMu2plcaa+Futrioltoasrnxtcee.+bdbaccaJtt......acohc1heFaa0ri,Taodnnafdidps(at−cphMrl1etiya)mtfhtoishnlihQelabound.ewcstitsifn1coi1rgrs.iMmxqtha2uiitennha−eadem nr7qaat8nuttictxaioQatctl+isMdo,een9c(tthxae3o)lrdxc=ms2u(0Uil−una)1&te4ecx222t.xf−tho+h+re−xeQ1e,n31ud,uexiea=2msnxxcsa+br0ln<aie.ndsm1rd001bia.xnna−dnttt1ya0pne dohfsesnodc(l1e.u)t.s13ietoxan2tes−tthox83er2txh−n+eu4img2xibve+eern1a=nds0 modelliwbxon,ergoicdTT.guoohhilmndeenaeoah1leqns6taqued.vuuqasTwesadkuhehet2rnaeeitactoxor+aitehnmoifrcAtonoehxaueir.fa2sxonlgTt+4tthrrhsoahme+eopfcealhmsummb=cuwotxohbinahuo20oesiyncny,ti+thicsabitoner.uefceqatpmoiuar=sofoeacasnnvdhseei0ynrinsyeatgmyscivtsnmaiiebtacdn.dcobocelolbofqlaulref,u.roonstaetmrhatoxneitvpohdnsernerues1ibisuss2nssubtthmebisvedtotsautintirtitimtuinihtA ($)aouetsabitntiinhi11112snlsoe02570527gesm05050055nho00000000bfooA0to.iwanhsrtcenhmkar1si.tntxa2htt2hh(aexef3no2fod)r4l2ilos+5t=wc, (rmai6nebnxogtxn2yi7p2to,hipnsed+8)coeeosp9c-vfsweai1=itbnl0shueld1eee1ginsrss1agoo2spllihtouvn,netcireo.thnxTes2hff=eoo=rrsmyx,mxc2oab,f<notthlbh0iees, kFeTpnxuhroaolinlvymwki dwl/peWeldoe grrgsikute eeii ndud fatt oihnlriesmc aeat ito n. c.−x2−4x+3=0 and are linked to d.2x2−20x+ =0 x12=+x42x++7x=0 questions. Foreachofthefollowing,calculatethediscriminantandhencestatethenumberandtypeoflinearfactors. x− x− =. Questions and topics a. x2+9x−2 b.12x2−3x+1 c.121x2+110x+ d.x2+10x+23 aloorfwe c esorem tqopu lehenixgcitheye;d ri dlfereovamesls 56..b0ab...2FFqx2uaocar−mtdoar2ra.liAitsniexcpepta+ehrlxye1pfa0drtchei=tfseofsedri0rosie.snfncr.rcoiemm2oki+tfnhsat(eownfttooht−leocluo4edbwq)eexutisena=,rgtmxio4i3ninn−wfeoki8xrltml2h,aea−alntwni(doukanmey+xsabpn3ehldra)axivaene+nxwdprkeahtayn=ylpdrte0hotheoowerftesiprllofirsoohorodatsvanunetlcoyytotoornhefneeaetrhleelevqiansauleelasuatfoeiraolcfuonattfociortson.r.toovoebrtain.a 1.equationtaouqsuiandgrafaticctoforirsmat.ion. 4(x444aaa−a2+==−−1x)x(2142aa−o−r−9a99=)===0900 Sedxeeamlemcoptnelsedts rwa toer ktheed alaonngddic cqaoullyne csdteeiopvntessl o aaprreee d afo.ll−owxTTin2hhg−eeezz8qeexurraoo+tssi9ooonff=saa.qq0uuaaddrraattiiccaarreexx==−√42+an√d2xa=nd−b.x√4=2x2−.+43−x√−27.=0 x2cannotbenegativea,baynyx2n.egativevalueofa xso2l=uti−onx41s2.o=rx−241=s9incetherearenoreal ucaselc uolfa ntoorns-.CAS caallorewfuinllgy egvraedrye d, bcca....FFF44iiixxnnn22ddd++ttthhhxeee+vvv=aaa2llluuu0=eeesss0ooofff sssooottthhheeeeeeqqquuuaaatttiiiooonnn3x(x22+++(24)xx+−2−22)(dx2.−−23√81+x)+24−=x=240=+−0ha0h4sxa9hns+xao2so√nr=oeen2a0erlo=rroootoo0.tt.s. 5. x xxx2=9√39 Free fully worked sstuucdceensts t.o achieve da..deterAmpipnleytthheend,uimscbriemr“cia,n0kn3taxdhQn2etut−yaetdopq4r:euaxtaoi−ctfiRoxken-lia=ntito0en2rsac+hleiwp(psat”sy+os—fht)a2hxs0e+1twg8/ro7a/=p1s7ho0ldu—aetil1fown2n:ea2sdy2fsbo—hyrakyspa=rgaet4io29nx00a−—l.r1o8#o2xt2s. 1.3:Algebra 1. sporoluvtiidoends, eanrea bling b.sketchth3eg.ra2phoGfyra=p42h−s18ox2f.quadraticfunctions 1:FindRootsof students to get help Aglno sesxateryn soifv e 11.acwF..oitroyyhwn==tehhea−9xt-xx3iv2-nxaa+t2Anplcixleesouur−irno1namTsepcgbns.7shoet3bltheeaxlpaeo0y.mnlrtggn−fxItrnsweomka.−bm1ptiuIhrtdh2nahilioatsioicttlepchfheslaieeaisxseteppqhdaharuim(ebegsaastyhardgseteyroihrasaoonae)ttnuiempAcpohowoafafrtwuiniotlmncehldfactreohlwtlyiroafo(eeovofs=xnievrpdxmxaireus-rebisixcalsaeneeusx2bidntinr2loeg+vegt+nrteshhcd2e1ro)bea.0afxfapinoQsxrbdot+eedrsun..md−qacecutdua,yyokollrawalar==adehthrdAimnaace−0oatvsroi=encerp0e-eae:naqx2llaleru22axycgala2hg+abtrieet+oopibl2vlnoarae0wt0a.ecixiedcanrnt−vxteoneagbfr+r2oremiat1ahlx2sube,psleeovesdwaa.rcetihoar.boAslofelqwxvuehiasidpcarrhapatcocitcsoiicnptaisovlilesyrtenswaoholm-ofliliafeael Roots:Real 4x4− x2−9=0,x wwinhh teehrteeh ectrlha easyts hrnooeomemde —iot,r miafesenB aapdottru hooarekvsemPi daiLnae Uh tdtiochS ivaen.el rpt-erorinmvte sr xa3TMTTg-mrrhh.aaaa••••••FTCKee2xopnkohoeiuhsg.snititwrsieymin1ththrnmaoylaotieeihafpgrdfpsreopra=Tatagehyoabsflsitrrxrenstwyhyihaas=uasistmgotpsxheemtroearef2hraaepnmoti,sfgntxytanfhaigcthoe2sorrhicsht=etafamahfrytwercinbotinaepmotguahcgiohrgtnlhamgxeprrhlelmoalaac2roebgfxahpgwaatprefher2pugahrvbotaa,c:hiahrrreordopsoponapyauhaouumpeafihtf,tnhsfhrhpyrp=pagoteiayyohsloor=f(slofpeeeof=13eryc=qtsoyprl,xhyysauni=1e2x-teidn=lao=aona2lxhtaetoexxns,ritixandq2ox2ihfrwou2ssdf:uo2ner,0rptbanaohyw3ivwyyfte<menie-=eaeoaa=arnrdradntxrteed>3hixidx<xlssxde2ait).,21.lr=txra1aaia-atwot.nae0ntnxddnhiebssyfoa.ynpf=cooatthifo13rnaerxmtc.2stoa(Isa0mtrh,to0omeifw)oes.esaantstfuhosrraofetmastxhtteehhsee. yQ y= u= –13a xxd22ray t=ic 3rxe2yl0at(i10yo, n3s)hipsy( 1(=x1, , 1x–13)x2) JaECsceaxrqehaaruncead2i234ans,−−−pe7cM,e1123a1ts.2t======2eh,s711—1r277Q−,A−−u122re712is2tth—1m1eMticaAthermiattihcamlMeethotdisc12Tbd42Uei,hf−−−cfi11ases&12ur341iess2,===enen2cftoo341e12hqt.r1112221e,arQ3neu−−−u12ias23e12r,eien11122t4h=onn12m==sc1loeCa11ctmniHcdmeAsoePsqnTuEenRce1Arithme1t1234i2c=========,s1−14333373e7q2,u21234e2n−−−−−,c2e7sandE3X2.ERCISE1.2 1 hlAacethena latsrphwpn eaitene terg rstn h iindaser e tocph frpoe iter iionpcavtacr iilhodn. fet d ABOUT THIS RESOURCE ix eBookPLUS features Concept summary links to studyON for study, revision and exam practice Fully worked solutions for every question Digital documents: downloadable SkillSHEETS to support skill development and SpreadSHEETS to explore mathematical relationships and concepts Chapter summaries in downloadable format to assist in study and exam preparation A downloadable PDF of the entire chapter of the print text Interactivities and video eLessons placed at the point of learning to enhance understanding and correct common misconceptions In the Prelims section of your eBooKPLUS A downloadable PDF of the entire solutions manual, containing worked solutions for every question in the text A set of four practice assessments: a problem solving and modelling task and three examination-style assessments FREE copies of the Maths Quest Manual for the TI-Nspire CAS calculator and the Maths Quest Manual for the Casio Classpad II calculator A downloadable PDF of the entire print text Additional resources for teachers available in the eGuidePLUS In the Resources tab of every chapter there are two topic tests in downloadable, customisable Word format with worked solutions. In the Prelims section of the eGuidePLUS Work programs are provided to assist with classroom planning. Practice assessments: in addition to the four provided in the eBookPLUS, teachers have access to a further four quarantined assessments. Modelled on QCAA guidelines, the problem solving and modelling tasks are provided with exemplary responses while the examination-style assessments include annotated worked solutions. They are downloadable in Word format to allow teachers to customise as they need. x ABOUT THIS RESOURCE

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.