OCL2015,22(1)D102 OCL (cid:2)c C.Bockstalleretal.,PublishedbyEDPSciences2015 DOI:10.1051/ocl/2014052 Oilseeds & fats Crops and Lipids Availableonlineat: www.ocl-journal.org Research Article – Dossier Open Access C RITÈRESDEDURABILITÉ ustainability criteria S Issues in evaluating sustainability of farming systems with indicators r e Christian Bockstaller1,2,(cid:2), PaulineFeschet1,2 and FrédériqueAngevin3 si s 1 INRA,UMR1121AgronomieetEnvironnement,INRA-UniversitédeLorraine,BP20507,68021ColmarCedex,France o 2 UniversitédeLorraine,UMR1121,AgronomieetEnvironnement,BP20507,68021ColmarCedex,France D 3 INRA,UAR1240Eco-Innov,avenueLucienBrétignières,78850Thiverval-Grignon,France Received14November2014–Accepted3December2014 Abstract – Thegrowingconcernabout side-effectsofpoliciesfocusingoneconomicgrowthoreventechnological innovations, aswellasagricultureintensificationleadsmoreandmorestakeholders topayattentiontothequestions ofmonitoring andevaluation of agricultural practices. Thisstepof evaluation isnow essential inpolicydecision, in research and design of innovative solutions, in NGOs’ development projects, as well as in improvement process in ISO certification. The aim of thisarticle isto review steps inthe evaluation of sustainability in agriculture, starting inafirstsectionwiththenecessitytodevelopaconceptual indicatorframeworktopreciseevaluators’ownvisionof sustainability.Inasecondsection,weaddressthenecessitytoanswerpreliminaryquestionsthatwillguidetheselection ofasetofindicatorsoranassessmentmethod.Inathirdsection,afterdiscussingthewaytocategorizeindicators,we provide an overview of available indicators for two sustainability themes of the environmental dimension regarding respectivelynitrogenmanagementandbiodiversity.Inafourthsection,wehighlightthediversityofevaluationmethods ofsustainabilitythroughsixexamplesinFrance.Finallyweconcludethearticlewithageneraldiscussiononquestions thatremaintoaddress. Keywords: Multi-criteriaassessment/framework/aggregation/nitrogenmanagement/biodiversity Résumé– Choixd’unensembled’indicateurspourévaluerladurabilitédespratiquesagricoles. Lesoucicrois- santausujetdeseffetssecondairesdepolitiquescentréessurlacroissanceéconomique oudesinnovationstechnolo- giquesmaisaussidel’intensificationdel’agricultureconduitdeplusenplusd’acteursàs’intéresseràlaquestionde l’évaluationetlesuividespratiquesagricoles.Cetteétapedel’évaluationestdevenueprimordialedansladécisionpu- blique,danslarecherchedesolutionsinnovantes,dansdesprojetsdéveloppementd’ONGouencoredanslesdémarches deprogrèsencertificationISO.L’objectifdecetarticleestdepasserenrevuelesétapesd’unedémarched’évaluationde ladurabilitéenagriculture,enpartantdelanécessitédedévelopperuncadreconceptueldesindicateursafindepréciser lavisiondeladurabilitédel’évaluateur.Dansunesecondepartie,nousmettonsenévidencelanécessitéderépondre àdesquestionspréliminairesquivontguiderlechoixd’unensembled’indicateurset/oud’uneméthoded’évaluation. Dansunetroisième,aprèsavoirdiscutédelapossibilitéd’établirunetypologied’indicateurs,nousprésentonsunevue d’ensembledesindicateursdisponiblespourdeuxthématiquesdeladimensionenvironnementale,lagestiondel’azote etcelledelabiodiversité.Dansunequatrième,nousillustronsladiversitédesméthodesd’évaluationdeladurabilité enagricultureautraversdesixexemplesfrançais.Enfin,nousterminonsl’articleparunediscussionsurlesquestionsà approfondir. Motsclés: Évaluationmulticritère/cadreconceptuel/agrégation/gestiondel’azote/biodiversité (cid:2) Correspondence:[email protected] ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by/4.0), whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. C.Bockstalleretal.:OCL2015,22(1)D102 1 Introduction orpracticesledtonumerousassessmentmethodsimplement- ingascoringsystemoffarmers’practicesliketheIDEAmeth- Followingthe Rio conferencein 1992,the environmental odsfortheenvironmentalpillarofsustainability(Zahmetal., issue and, more generally, the question of sustainability be- 2008) or the indicator set of Rigby et al. (2001). The goal- came a concern in the developed countries and at the planet basedapproachofsustainabilityisalsoverycommonanden- level.Thoughitsabilitytofederate,thisconceptfailedtomeet compassesa frameworkbasedona setofgeneralgoalsoften aconsensusonitsimplementationuntilnow(Robinson,2004) dividedinmoreoperationalgoals(Bockstalleretal.,1997).An so that Lacousmes (2005) spoke about a “driving illusion”. exampleofanenvironmentalgeneralgoalcanbe“preserving However, the growing concern about side-effects of policies water quality” that can be translated into several operational focusingoneconomicgrowthortechnologicalinnovations,as goalslike“reducingnitrateleaching”or“decreasingpesticide well as agriculture intensification led more and more stake- transfertogroundorsurfacewater”.Insomecases,thegoals holders to pay attention to the questions of monitoring and canbequantified(e.g.“reducingthenitrateleachingbyX%”). evaluation.This step of evaluationhas becomenow essential In many other systems, goals are expressed more vaguely in in policy decision,in research and design of innovativesolu- formofthemesandsub-themes(e.g.AlkanOlssonetal.,2009; tions, in the NGOs’ development projects, as well as in im- Ledouxetal.,2005).InLife-CycleAnalysisfocusingmainly provementprocessin ISOcertification(López-Ridauraetal., ontheenvironmentaldimension,goalsrefertoenvironmental 2005;NiemeijeranddeGroot,2008).Thus,thereisageneral impacts derivedfrom the cause-effectchain (Payraudeauand agreementontheneedofdevelopingsustainabilityindicators vanderWerf, 2005).Morerecently,Life-CycleAnalysiswas that have to be organizedin a conceptualframeworkto form appliedto the socialdimension(Falqueet al.,2013; Feschet, anevaluationmethod.Theuseofindicatorscanbeeasilyex- 2014). The last approach of sustainability referring to a pro- plained by the impossibilityto measure directlyenvironmen- priety of agricultureto continue was extendedby severalau- tal impactsin routineoutside of researchcontext,or bydiffi- thors to a set of systemic properties.Bossel (2000) proposed cultieswhenaddressingcomplexsystemsorconceptssuchas six basic axes linked to systemic properties:existence, effec- biodiversityandsustainability(Grasetal.,1989;Mauriziand tiveness,freedomofaction,security,adaptability,andcoexis- Verrel,2002).Thishasfosteredagreatdevelopmentofstudies tence across totally different systems like cultural and social onindicators,especiallyintheagriculturalsector(Riley,2001; systems, ecosystsms. López-Ridauraet al. (2005) collecteda Rosnobletetal.,2006). longlistofattributesorpropertiesofsustainabilitytodevelop The aim of this article is to review steps in the evalua- anassessmentmethodofsustainabilityofsmallpeasantfarms tionofsustainabilityinagriculture,startingin Section1 with inMexico.Finallyhefocusedonfivemainattributes:produc- the necessity to developa conceptualindicator frameworkto tivity (ability to produce a combination of outputs), stability precise evaluators’own vision of sustainability.In Section 2, (to reproduce the former), reliability (ability to remain at an weaddressthenecessitytoanswerpreliminaryquestionsthat equilibrium state in normal conditions), resilience (ability to willguidetheselectionofasetofindicatorsoranassessment recover a normal stage following a perturbation) and adapt- method. In Section 3, after discussing the way to categorize abilityorflexibility(abilitytofunctioninnewconditions).Al- indicators,weprovideanoverviewofavailableindicatorsfor though this last approach is interesting in its genericity and two sustainabilitythemesoftheenvironmentaldimensionre- in avoiding long list of indicators, its implementation raises gardingrespectivelynitrogenmanagementandbiodiversity.In problem when a property should be translated into concrete Section4,wehighlightthediversityofevaluationmethodsof indicators(AlkanOlssonetal.,2009). sustainabilitythroughsixexamplesinFrance.Finallywecon- clude the article with a general discussion on questions that Most of sustainability frameworks are structured across remaintoaddress. three sustainabilitydimensionsorpillars:economic,environ- mental and social. Within each dimension, a list of items, goals,themes,etc.aredefined.Insomecases,thoseareorga- 2 Different sustainabilityframeworks nized in a hierarchical way which leads the aggregation step of indicators like for the MASC (Craheix et al., 2012) and Sustainabilityisbynatureamultidimensionalissuewhich DEXiPM models (Pelzer et al., 2012), or in the method of addresseshenceasetofcriteriawhichcanbesimplyorganized van Asselt et al. (2014). The property-based approach pro- inalistorinamorecomplexframework(Ledouxetal.,2005). poses generic properties across the three dimensions of sus- Inanycase,ageneralconceptualindicatorframeworkisapre- tainability.A similar attemptwas presentedby Alkan Olsson requisitetoanyindicatorselectiontoavoidaunconsideredand etal.,2009)foragoal-basedindicatorframework(GOF)that evenbiasedassessmentofsustainability(AlkanOlssonetal., classifiessustainabilitythemesbetweenultimategoal,process 2009).Hansen(1996)distinguishedbetweensustainabilityas toachieve(goal)andmeans(AlkanOlssonetal.,2009).This an approachof agricultureand sustainabilityas a propertyof classificationofthemesacrosssustainabilitydimensionscon- agriculture.Heseparatedtheformerbetween(i)analternative siderstheactionchain.Apolicyismotivatedbyoneorseveral ideologyand(ii)asetofstrategies,andthelatterbetween(iii) ultimategoals(e.g.humanhealth,viability,seeBossel(2000)) anabilitytofulfillgoalsand(iv)anabilitytocontinue.Ifthe requiring some process to achieve it (e.g. balance of envi- firstapproachbasedonanideologyremainsgeneralandvague, ronmental function, improvement of economic performance) the three others have been translated in operational princi- and means (e.g. protecting environmental compartment, in- plesthatinspireddifferentevaluationframeworks(Smithand creasing financial capital), across the three sustainability McDonald,1998).Definingsustainabilityasasetofstrategies dimensions. D102,page2of12 C.Bockstalleretal.:OCL2015,22(1)D102 Contribution to global issue (e.g. energy, greenhouse Global encompassingsystem gases, depletion of P, K (e.g. country continent, planet) resources) Local encompassingsystem Contribution to local issue (e.g. water catchment, région) (e.g. water quality, food chain supply) System studied (e.g. field, farm) Direct issue for the system (e.g. soil protection, profitability) Fig.1.Definitionofsystemandrelatedsustainabilityissues. r e i 3 Preliminary choices When?),theorganizationallevel,whichwillbeinfluencedby s s theuserneeds,theissuesofconcerns,etc.InLifeCycleAnal- The clarification of a sustainability frameworkthat struc- ysisapproaches(LCA),usersarecompelledtodefinethesys- o turestheindicatorselectionhastobecompletedbyseveralpre- tem boundaries(Brentrupetal.,2004). Itcanbe theproduct, D liminary choices and assumptions (Bockstaller et al., 2008). the farm including or not upstream such as productionof in- Aninitialdiagnosisisrequiredtoidentifytheactualissuesre- puts and offstream activities such as waste management. In garding sustainability for a given system, to put in evidence many other evaluation methods, this definition seems to be stakeholders and participants implicated, processes involved, neitherexplicitnorunifiedbetweenindicators.Forexample,in degree of severity of impacts etc. (answering therefore the severalmethodsindirectenergycostduetofertilizer,pesticide, question:whytoevaluate?). machineproductionareincludedintheenergycalculationlike Theidentificationoftheend-users(toevaluateforwhom?) in LCA although for the rest of issues like water quality or and the definition of the practical objectives (to evaluate for emissionsofpollutanttoair,suchapproachisnotimplemented what?)oftheindicator,werepointedoutasanessentialstepby and only directimpactat field or farm levelare covered.Re- severalauthors(BrooksandBubb,2014;Girardinetal.,1999; gardingspatialandtimescalesoneshouldpayattentiontothe Mitchell et al., 1995). This preliminary steps will serve as a resolution of calculation and the level at which basic calcu- basis to design or select indicatorsthat meetend-usersneeds lations are carried out. Farm and year are typical resolution andrequirements.Differentusersgroupscanbeidentifiedlike, forenvironmentalindicators.Thisshouldnotbeconfusedwith forexample,scientists,advisors,farmers,decisionmakers,or the extent,i.e.the wholearea,(e.g.theregion),ortime span, consumers. The group of people doing the calculations and (e.g. the crop rotation), covered by the indicators calculation thegroupofpeopleusingtheresultsshouldbedifferentiated. (Purtaufetal.,2005). In many cases, although farmers are the targeted user group, Another aspect to consider is the differentiation between theyareactuallynotdirectusersoftheevaluationmethodbut the system itself and the encompassing systems that can be they are end-users of the results (Cerf and Meynard, 2006). separatedbetweenthelocalandtheglobalones(Fig.1).This Itshouldbenoticedthatthepositionofusersandend-usersof refers respectivelyto “on-site” (on the system) and “off-site” resultsisinmanycasesnotonlydrivenbyscientificconsidera- issues (outside the system), (Smith and McDonald, 1998). tions(Bouleau,2012;Gudmundsson,2003).Indeed,theymay “On-site” issues (e.g. soil quality of farm fields) are linked interestintheselectionofindicatorsortheirresultstodefend to the sustainability of the studied system (e.g. farm) while theirinterests. “off-site”issuesconcerntheencompassingsystem,(e.g.region An indicator can be developed for various objectives. where the farm is located), or the society as a whole (Alkan Thosecanbeorderedinthreemainusages:(i)togainknowl- Olssonetal.,2009).Theformerreferstosustainabilityofagri- edge about a system, e.g. ex post evaluation of an action at cultureitself,thelattermaybeconsideredasthecontribution theendorduringitsimplementation,monitoringpurposewith ofagriculturalsystemstosustainabledevelopment.Forthelat- an alert role, or checking the respect of regulation. (ii) for ter, local and globalissues can be distinguished.In any case, decision support: ex ante evaluation of actions in a planning intheperspectiveofsustainability,abalancedchoicebetween phasetoselectthe“best”system(Sadoketal.,2008),decision directissuesofthesystem,andcontributiontolocalandglobal support in real time to drive the system, (iii) communication issuesshouldbedone(AlkanOlssonetal.,2009). which impliesa reduced numberof indicatorseasy to under- Lastbutnotleast,meansandresourcesshouldbeassessed stand(Mitchelletal.,1995). beforeselectingamethod.Itincludesbudget,time,dataavail- Thedesignofa sustainabilityframeworkallowstodefine ability,etc.tobesurethattheymeettherequirementsofase- theissueofconcernsorcriteriatoprecisethecontentofeval- lectedmethod. uation(toevaluatewhat?).Thosecanbepresentedinformof a set of strategies, of goals, themes, systemic properties, etc. aspresentedintheprevioussection.Thedefinitionofthesys- 4 Different typesof indicators temboundariesisanotherimportantstepdirectlylinkedtothe previousone (VanCauwenberghet al., 2007). Itincludesthe Differenttypologieswereproposedtocategorizethebroad calculation scales, spatial and temporal (to evaluate where? variety of indicators proposed in the last decades. At the D102,page3of12 C.Bockstalleretal.:OCL2015,22(1)D102 MMaannaaggeemmeenntt * Emission/state/impact Soil* Climate Abiltiyto trace cause-effect relationship Predictiveeffect indicatorbasedon Predictiveeffect complexmodel indicatorbasedon M(x , … x , p ,p) 1 n 1 k MMeeaassuurreedd ooppeerraattiioonnaallmmooddeell (e.g. Vegpop2) effectindicator f(x , …, x ) 1 p y , y Causal indicator (e.g. Flora-predict) 1 2 xx , xx , xx //xx , xx -xx ((ee..gg.. nnuummbbeerrooff bbiirrddss 1 2 1 2 1 2 species) (e.g. % semi-naturalarea) Intégration ooff pprroocceessss Feasibility Fig.2.Typologyofindicatorsaccordingtotheirnature(adaptedfromBockstalleretal.,2011). international level the well-known Pressure/State/Response variablesor environmentalvariables(soil, climate, etc.). (PSR) and Driving-force/Pressure/State/Impact/Response For the former,the term “means” is relevant but not for (DPSIR)frameworkswereinspiredbythecause-effectchain. thelatter; They were developed to ascertain the relevance of environ- (ii) Predictive effect indicators based on model output that mentalindicatorsforhumanactivitiesandtheirconsequences canbeoperational(withareducedandavailablenumber at national level. These frameworks are extended by some ofinputvariables)orcomplex(fromtheresearchpointof authors to lower scales (e.g. Maurizi and Verrel, 2002) in view,withoutconsideringthenumberandavailabilityof spite of criticisms formulatedbydifferentauthors(Niemeijer inputdata); and de Groot, 2008). One major drawback is the impression (iii) Measured effect indicators based on field assessment or of linearity between pressure, state and impact given by the observation. framework,whereastherealityismorecomplexandcloserto a causal network than to a chain. Another flaw is the ambi- Effect indicators may refer more precisely to different guity ofthe item, for instancepressure.Behind,youcan find stages on the cause-effect chain: emission, state or impact severaltypesofindicators(seebelow).Forexample,pressure (Bockstaller etal., 2008). Asshown onFigure2, those types encompassesemissionindicatorswhichcanbemeasured(e.g. do not show same qualities. Indicators belong to the groups nitrogen content at bottom of the root zone, measured by of causal indicators and result in most cases in a poor pre- ceramiccup)ormodeloutput(fromfieldleachingmodel),as dictive quality whereas measurement indicators may provide wellassimpleindicatorsbased oninformationfromfarmers’ more precise informationaboutthe state or the impact, with- managementdata(e.g.amountofnitrogeninput). outprovidinginformationonthecauses.Predictiveindicators Several authors made the difference between (i) means- are usefulforex anteassessmentandto relateeffectto cause based indicators (van der Werf and Petit, 2002), or action- (Bockstalleretal.,2008).Inanycase,allthosetypeshavetheir oriented indicators (Braband et al., 2003) using informa- utility,causalindicatortohighlightchangesinmanagementor tion on farmers’ practices or other causal variables; and (ii) environment sensitivity, measured effect indicators for mon- effect-basedindicatorsorresult-orientedindicators,basedon itoring, predictive indicators for analyzing cause-effect rela- an assessment of the effect at different stages of the cause- tionsinordertoimprovethesystem. effect chain. Concerning biodiversity, some authors also dis- tinguishedbetweenindirect(means-based)anddirect(effect- based) indicators. However, observing that these classes still cover indicators totally different like measurement or model 5 Example of indicatorsand of evaluation output, Bockstaller et al. (2011) and, Feschet and Lairez methods (2015)proposedanothertypologytakingintoaccountthena- tureandstructureoftheindicators.Hereweproposeanadap- tationoftheformerbasedonthefollowingclasses: In this section we illustrate the diversity of indicators for two major environmentalissues: impactof nitrogenman- (i) Causal indicator based on a causal variable or a simple agement and biodiversity. We also describe different evalu- combination of variables of same nature (sum, product, ation methods based on a set of indictors to highlight their ratio). Causal indicators can be based on management variability. D102,page4of12 C.Bockstalleretal.:OCL2015,22(1)D102 Category Number Scale Example Management Input management 11 Farm,Year Storagecapacitiya FFaarrmm, FFiieelldd Goodmanagement 13 Numberof fertilizationsa Year Farm, Water catchment % referencearea fertilizedwith Fer(cid:2)lizedarea 4 Year organicfertilizera Farm, Field, Cropping Nitrogenamount 20 Nitrogenratea, b system, Year Farm, Field Nitrogenbalance 31 Farm-gatebalancea Pluriannual Devia(cid:2)on from the Farm, Field Devia(cid:2)on from r 5 recommended nitrogen rate Year recommenda(cid:2)ona e Farm, Field si Produc(cid:2)vity/ Efficience 7 Nitrogenuse efficiencyb Year s Field Baresoilduringdrainage o Soilcovermanagement 20 Year perioda D Sensi(cid:2)vityof environemen(cid:4)o Field, Water catchment 15 DRASTICb ttrraannssffeerr PPlluurriiaannnnuuaal Field, Croppingsystem Nitrogenbalancex Coefficient 3 N-Index Tier-1b Pluriannual Field, Croppingsystem Qualita(cid:2)ve oppera(cid:2)onalmodel 5 MERLINa, c YYear, Pluriannual Field, Croppingsystem Quan(cid:2)ta(cid:2)veopera(cid:2)onalmodel 17 IN INDIGOd Year, Pluriannual Field MMeeaassuurreemmeennttooff ssooiillnniittrrooggeenn 66 SSooiillmmiinneerraallnniittrrooggeennb Year, Pluriannual Emission/ Water catchment, Field Measurementof water quality 8 Nitrateconcentrationa state/impact Pluriannual Fig.3.Typologyofnitrogenindicators(Schnelleretal.,2013a).Referencesfortheexamples:a CORPEN,2006,b BuczkoandKuchenbuch, 2010,cAvelineetal.,2009,dBockstalleretal.,2008. 5.1 Nitrogenindicators extensivelydiscussedbysomeauthors(e.g.Lindenmayerand Likens, 2011). Indicators based on species diversity and/or ThetypologypresentedinFigure3resultsfromtheanaly- abundance among a given taxon or several taxa (e.g. birds, sisofadatabaseof1464environmentalindicatorsissuedfrom plants, carabid beetles, etc.) are the most commonly used at 112methodsor reviewsonindicators.Thedatabase wascre- different scales, from field to national level. Many proposals ated by Rosnoblet et al. (2006) and extended and analyzed alsoexistforcausalorindirectindicators.Amongthe91indi- by Schneller et al. (2013b). The whole variability presented catorslistedforagriculturebyDelbaere(2003)morethanhalf in Figure 3 ranges from causal indicators based on manage- belongstothistype.Whenconsideringthegeneralmodelex- mentdata,likethemanurestoragecapacity,tomeasuredeffect plaining biodiversityin farmland(Le Roux et al., 2008)they indicators of water quality with in-between effect predictive canbeintwogroups:(i)indicatorsrelatedtomanagementof indicators based on operationalmodels. The category “nitro- farmlandlikethepercentageofsemi-naturalareaand,(ii)indi- genbalance”isthemostpopularwithmorethan30proposals. catorsaddressingcroppingpractices,whichcanbeexpressed Thosecouldbedifferentiatedbetweenfarm-gate,soil surface inamountofinputsperareaunitorinpercentageofareadis- andsoilsystembudgets(Oenemaetal.,2003).Althoughnitro- turbedbyfertilizer,pesticides,irrigation,tillage.Bothgroups genbalanceisrecognizedasthemostcommonlyusedindica- canbeexpressedatdifferentscales. tortoassessnitrogenmanagement(Langeveldetal.,2007),its Contrarytothetwoprevioustypesofindicators,examples predictive quality of nitrogen losses, especially nitrate leach- ofpredictiveeffectindicatorsaccordingtothetypologyinFig- ingremainsquestionable,especiallyinthecaseofcalculations ure2arelessnumerous.Table1providesanoverviewofini- withannualdatainsituationswithlowsurplus(Oenemaetal., tiativesbasedonanoperationalmodelinarablefarming.Most 2005). of the methodsbelongto a multi-criteriaassessmentmethod. SALCAbd(Jeanneretetal.,2014)wasdevelopedtocomplete theSALCAmethodbasedonLifeCycleAnalysisalthoughit 5.2 Biodiversityindicators onlydealswithdirecteffectsatfieldandnotupstreamoroff- Since the 80s, a large number of direct measured indic- streamindirectimpacts(seeSect.3).Outputsareinformofa tors for biodiversity has been proposed in the literature and probability of presence or a decreased of number of species, D102,page5of12 C.Bockstalleretal.:OCL2015,22(1)D102 e p a Scale Fields,farm,landscape Farm,landsc Field,farm,landscape Field,farm Regional a) h o)/N Inputvariableorcomponent/E.g.grazing(yesno)/Slurryapplication(yesnMineralfertilization(kg SoilcoverCropdiversityMachineusePesticideriskIrrigationSemi-naturalareaE.g.numberoftillageperturbationamountofnitrogennumberofherbicidesAllcroppingpractices E.g.springtoautumnsowingAgrochemicalinputsLossofnon-croppedhabitatLanddrainage etal.daptedfromBockstaller,2011). Aggregationfunction CalculationofsuitabilityindexfromtheBritishNationalVegetationClassificationAprobabilityofpresenceisderivedfromthisindexDecisiontreewithfuzzysubsetsforglobalindicatorsandcomponents Continuousfunction Eachcroppingpracticesisscoredandanaveragevalueiscalculated Scoringsystem:assessingimpactone.g.speciesneeds(diet,foragehabitats) a ( htheirmaincharacteristics Expressionofresult Probabilityofpresencebetween0and1 Scorebetween0(maximumimpact)and10(noimpact) Disturbanceimpactscoredbetween0(none)and1(high) Scorebetween1(negativeimpact)and5(positiveimpact) Riskscorebetween0(none)and3to6(high) wit dicators Speciesnumber534 1111 Notexplicit1 Notexplicit 63142344190 n i ctivebiodiversity Taxonomicgroup(species)Plants PheasantPartridgeFieldhareWildrabbit Amphibian Partridge PlantsMammalsBirdsAmphibiansSnailsandslugsSpidersCarabidbeetlesOrthopteraBeesandbumblebeesButterfliesBirdsBumblebeesButterfliesMammalsBroadleafplants di 1.Examplesofpre Namereference VEMetal.(Sanderson,1995) Keichinger(2001) Meyer-Aurichetal.(2003) SALCAbdetal.(Jeanneret,2014) etal.Butler(2009) e bl a T D102,page6of12 C.Bockstalleretal.:OCL2015,22(1)D102 d anat m mbit e ea e st sth cal sy syng S ng ngori Croppi Croppineighb Field Field Farm InputvariableorcomponentCropdiversityNon-sprayedareaTreatmentfrequencyaindexE.g.deeptillage,Treatmentfrequencyaindex,Habitatmanagementforsoilnaturalennemies E.g.croppingpractices,Herbicidestreatmentafrequencyindex,/Fertilization(kgNha) 11managementand11habitatvariablesE.g.mineralfertilization/(kgNha)TreatmentfrequencyaindexAreawithtillage cticides. ossierD e 8) ns EXi EXi 200 es,i Aggregationfunction DecisiontreeimplementedinDetal.software(Bohanec,2008) DecisiontreeimplementedinDetal.software(Bohanec,2008) Decisiontreewithfuzzysubsets Logisticregressionfunction Decisiontreeimplementedinetal.DEXissoftware(Bohanec, eparatelyforfungicides,herbicid s d 1 e Expressionofresult 4qualitativeclasses 5qualitativeclasses Between0(low)and Occurrenceofbird/(yesno)5qualitativeclasses etheindexiscalculat er H peciesumberNo Notxplicit 111NotxplicitNotxplicit2 None rate. Sn e e e d e d n Taxonomicgroup(species)Notprecised FlyingnaturalenemiesPolllinatorsSoilnaturalenemiesWeedsFloraofsemi-naturalareaBirdAmphibianMammalHoverfly Fieldflora Birds None /eraterecomme d ci Continued. Namereference MASCetal.(Craheix,2012) DEXiPMetal.(Pelzer,2012) etal.Sattler(2010) etal.Tichit(2010)IBEAAnonymous(2011) ratioactualpesti 1. of e m bl u a S T a D102,page7of12 C.Bockstalleretal.:OCL2015,22(1)D102 or in form of risk or impact scores. Whereas some models However,forsomethemes,thenumberofindicatorsmay tackleinanexplicitwayabroadnumberofspecies,forplants be low. This is particularly true for predictive effect indica- (Sanderson et al., 1995) or several taxa (Butler et al., 2009), tors based on operationalmodels. Such indicators require an most of them focus on a few number of species or few taxa important design work integrating knowledge on the effect withoutexplicitinformationonthese. of farmer management in interaction with soil, climate vari- ables to give an output which expresses an effect which can be linked to emissions, or the state and furthermore the im- pactlikeinLCA.Topicslikebiodiversity(seeSect.5.2),soil 5.3 ExamplesofdifferentFrenchevaluationmethods compaction, nuisance due to noises and odours present gaps ofsustainability for predictive effect indicators. A new challenge will be to evaluate ecosystemic services in such a predictive way, from Providing an exhaustive overview of the “explosion” of managementpracticestobiodiversityandfrombiodiversityto evaluation methods in the last decades is totally out of the ecosystemicservices.Thesecondstepisaddressed,forexam- scope of the article. The reader should refer to synthesis like ple,byanindicatorassessingflowerpollinationvalueoffloral thisofRosnobletetal.(2006)orSinghetal.(2012).Table2 diversityinfieldmargin(Ricouetal.,2014). gives an overview of six French evaluation methods of sus- Inanycase,usersneedalsotoknowthequalityofthein- tainability in agriculture. The number of indicators for each formationdeliveredbyanindicator,especiallywhenitisused methodishigherthan30withhighestnumberforDAESEand to evaluate effect on an issue of sustainability like an envi- EVAD. Strictly speaking,DAESE and EVAD are notevalua- ronmental impact. Due to many simplifications, a direct cor- tionmethodreadytoimplementbytheend-usersbutoffersre- relation can rarely be expected excepted for a broad range spectivelyabroadlistofindicatorsforthefirstone,andanin- of landscape conditions. Such correlations were for exam- dicatorlistandamethodologicalframeworkforthesecond.At ple pointed out between diversity within taxon (birds, bees, farm level, causal indicators based on management variables etc.)andcausalindicatorsbasedonmanagementvariablelike areimplementedtomakethemethodeasytousewithfarmers. thenitrogeninputorpercentageofsemi-naturalarea(Billeter MASCandDEXiPMhavebeendevelopedtobeimplemented etal.,2008).Specificteststoidentifymorecomplexrelations in researchworkto evaluateex anteinnovativecroppingsys- have been also proposed (Bockstaller et al. (2008). In every temsduringthedesignphaseandtohelptoselectandimprove case, this raises the question of uncertainty linked to indi- mostperformantsystemsforexperimentation.MASCisbased cator results. For an indicator based on the nitrogen balance on quantitative predictive effect indicators (see Fig. 2) and multiplied by a coefficient (see Fig. 3), Mertens and Huwe can alsobe usedtoevaluateactualcroppingsystems(ex post (2002) handled uncertainty of data by implementing an ap- evaluation).DEXiPMisbasedonqualitativecausalindicators proach based on fuzzy logic so that no unique value but an whichareaggregatedtomakequalitativepredictiveeffectin- intervalisgiventotheuser. dicators.This makesthe evaluationworkmuchfaster than in MASCinspiteofhighernumberofbasicindicators.Forsome Many indicatorsare available at field and farm level as it methodslike IDEA, aggregationis based on a sum of scores comes out from the overview given in this article. However, thatisquestionedbymanyauthors(Bockstalleretal.,2008). for example, water quality indicators should be used at the MASCandDEXiPMdecisiontreesareimplementedthanksto scaleofthewatercatchmentorforalandscape.Emissionscan theDEXisoftware(Bohanecetal.,2008).Thistoolallowsthe be assessed at lower scale of cropping and farming systems. design of such qualitativedecision trees using “if then” rules For indicatorassessing emissions, results can be upscaled by andinputvariablesorganizedinclasses. aggregation of results obtained by calculation of an average valueathigherscaleweightedbythesizeorthenumberofen- tityatlowerscale.Suchaggregationathigherscalelikeana- tionisnotrelevantforlocalimpact,e.g.waterquality,erosion, 6 Discussion whereas it is possible for global impact, such as greenhouse gases.Upscalingrequiressomestatisticalskillsfordataman- agement but must also integrate new processes (Stein et al., Theclarificationofpreliminarychoicesdescribedin Sec- 2001) and new environmentalcomponents(e.g. non cropped tion3isimportanttoguidetheuserinhisselectionofanevalu- area). In any case, even without an upscaling procedure, the ationmethod,toavoidhimacontingentselectionledbyavail- possibility to work at a fine resolution (e.g. field) for large abilityofamethodinhisorganizationorsurroundings.Indeed, extent (e.g. a water catchment) is an important challenge for suchachoicecanleadtotheuseofanon-adaptedmethodthat agronomiststo enable to work on realistic scenarios of man- doesnotmeethisneedsor hismeansor evenmoreto biased agementevolution,allowingfinerdescriptionofcroppingsys- evaluation of sustainability. In any case, the great number of tems than only the type of crop and average fertilizer rates indicatorswithinsomethemeslikenitrogen,aswellastheva- (Leenhardtetal.,2010). rietyofevaluationmethodsmakesthepreliminarystepofclar- ificationessentialtoavoidarandomlyapproachequivalentto Asalreadymentioned,sustainabilityisbynaturea multi- alottery.Consequently,someauthorsproposealistofcriteria dimensionalissuewhichaddressesasetofcriteriawhichcan to select the “best” method(Bockstaller et al., 2009; Feschet besimplyorganizedinalistorinamorecomplexframework. andLairez,2015;NiemeijeranddeGroot,2008),orevenmore Aquestionrisessoonerorlaterconcerningthenecessityofan aninteractivedecision-aidtoolsuchthePLAGEwebplatform aggregationtofacilitatetheinterpretationofsetofresults,es- (Surleau-Chambenoitetal.,2013). pecially when more than 30 indicators are used (see Tab. 2). D102,page8of12 C.Bockstalleretal.:OCL2015,22(1)D102 Comments:objectives,typeofindicators,aggregationmethod Evaluationofsustainabilityatfarmleveltomakefarmerssensitivetothisstake.Useofcausalindicatorsforenvironmentaldimension,sumofscoreswithineachdimension.TheglobalsustainabilityscoreistheworstofthethreedimensionsEvaluationofsustainabilityatfarmleveltomakefarmerssensitivetothisstake.Noaggregationofindicators.Alargerangeof(causal)indicatorstomonitorchangeinmanagementregardingsustainabilityforafarmnetworkatregional(national)level.Noaggregation.Decisionaidtoolforaction,designandselectionofawiderangeofindicators(fromffdierenttypes) Evaluateandrankcroppingsystemsbyidentifyingstrongandweakpointsregardingffsustainability.Useofpredictiveeectindicatorswhenpossible.AggregationthankstoDEXisoftware.exanteRapidevaluationofinnovativecroppingsystemstoselectthemostperformantones.Causalqualitativeindicatorsaggregatedffinqualitativepredictiveeectindicators.AggregationwithDEXisoftware ssier o 2014). Numberofindicators 42 34 120 230 39 61 justice. D ckstaller, Numberomaincriteria 10 18 19 13 8 8 dwomen, o n B a mFeschetand Decompositionofsustainabilityin /Scale/componentindicator /Dimension/criteriaindicator /Axis/compartmentindicator /Dimension/principles/criteriaindicator/Dimensionaggregated/criteria/basiccriteriaindicator/Dimensioncaggregated/criteria/basiccriteria/indicatorpractices ofcommunity o nt fr d nd me inagriculture(adapted Dimensionsofsustainabilityconsidered Economic,socialanenvironmental Economic,socialandenvironmental Economic,socialenvironmental Economic,asocial,institutionalaenvironmental Economic,socialandenvironmental Economic,socialmandenvironmental articipation,empower ustainability Scale Farm Farm Farm Farm,production/sectorlandscape Croppingsystem Croppingsyste overnance,p s g uationmethodsof Typeofproduction Arable,livestock,winegrowing Dairyproduction Arable,livestock,winegrowing Aquaculture Arablecrops Arablecrops assesforinstance val mp e o sixFrench Periodofconstruction 2000–2008 2010 2003–2007 2005–2008 2005–2012 2007–2011 mensionenc ble2.Overviewof Nameofthemethod IDEA(Zahmetal.,2008) Diagnosticdedurabilité–RAD(Féret,2004) DAESE–OTPAetal.(Guillaumin,2007) EVADetal.(Rey-Valette,2009) MASC2.0etal.(Craheix,2012) DEXiPM(Pelzeretal.,2012) heinstitutionaldi a T T a D102,page9of12 C.Bockstalleretal.:OCL2015,22(1)D102 Therelevanceofcompositeaggregation(i.e.ofindicatorsad- Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, dressing totally different issues) is often discussed because PlantureuxS.2008.Agri-environmentalindicatorstoassesscrop- of the loss of information but also due to the methodologi- ping and farming systems. A review. Agron. Sustain. Dev. 28: calproblemsit raises.A majorproblemis “addingappleand 139–149. pear”inthecaseofcompositeindicatorswhichcanappearin Bockstaller C, Lassere-Joulin F, Slezack-Deschaumes S, Piutti S, scoringmethod(Rigbyetal.,2001).Severalmethodareavail- VillerdJ,AmiaudB,etal.2011.Assessingbiodiversityinarable abletoavoidthisproblemlikethenormalizationtechniquein farmlandbymeansofindicators:anoverview.OCL18:137–144. monetaryunitorphysicunit,themultivariateapproach,orde- Bohanec M, Messean A, Scatasta S, Angevin F, GriffithsB, Krogh cisiontreesbased–ornot–onfuzzylogic(Bockstalleretal., PH,etal.2008.Aqualitativemulti-attributemodelforeconomic 2008).TheDEXisoftwaretool(Bohanecetal.,2008)makes and ecological assessment of genetically modified crops. Ecol. thedesignofdecisiontree(withoutfuzzylogic)quiteeasybut Model.215:247–261. remainstotallyqualitative.Forcomplextrees,specialattention BosselH.2000.Policyassessmentandsimulationofactororientation shouldbethereforeputonthesensitivityoftheaggregatedin- forsustainabledevelopment.Ecol.Econ.35:337–355. dicator to the variabilityof basic ones (Carpaniet al., 2012). BouleauG.2012.Cequenousapprendl’histoiredesindicateursen- Anotherflawis acertainlackoftransparencywhentheauto- vironnementaux.Rev.fr.For.5:645–652. matic weighting procedure ot the software is used. A totally BrabandD,GeierU,KopkeU,2003.Bio-resourceevaluationwithin different approach is the use of multi-criteria methods based agri-environmentalassessmenttoolsindifferentEuropeancoun- on an outranking (Cinelli et al., 2014) which has the default tries.Agric.Ecosyst.Environ.98:423–434. ofbeingbasedonrelativecomparisonsandnotonanabsolute BrentrupF,KustersJ,KuhlmannH,LammelJ.2004.Environmental assessment. More recently another approach addressing, in a impact assessment of agricultural production systems using the transparent way, compensations between indicators has been life cycle assessment methodology – I. Theoretical concept of proposed (van Asselt et al., 2014). In every case, we advise a LCA method tailored to crop production. Eur. J. Agron. 20: tousebothaggregatedandindividualindicators,theformerto 247–264. comparesystemsortoselectperformantones,thelatter toto BrooksS,BubbP.2014.KeyKnowledgeforSuccessfulBiodiversity identifyweakandstrongpoints. IndicatorsUNEP-WCMC,Cambridge,UK. Buczko U, Kuchenbuch RO. 2010. Environmental Indicators to Assess the Risk of Diffuse Nitrogen Losses from Agriculture. Acknowledgements. TheauthorsaregratefultotheGISGrandeCul- Environ.Manage.45:1201–1222. tureàHautesperformancesÉconomiquesetEnvironnementales(GIS Butler SJ, Brooks D, Feber RE, Storkey J, Vickery JA, Norris K. GC-HP2E, French group of scientific interest for arable crops), for 2009. A cross-taxonomic index for quantifying the health of itssupportoftheworkofChloéSchnellerandPaulineFeschet.The farmlandbiodiversity.J.Appl.Ecol.46:1154–1162. authorswanttothankChloéSchnellerforherworkontheindicator CarpaniM,BergezJE,MonodH.2012.Sensitivityanalysisofahier- database, andJulietteLairez(GISElevagesDemain) forhercontri- archicalqualitativemodelforsustainabilityassessmentofcrop- butiontothereflection. pingsystems.Environ.Modell.Softw.27-28:15–22. CerfM,MeynardJM.2006.Lesoutilsdepilotagedescultures:di- versité de leurs usages et enseignements pour leur conception. References NaturesSciencesSociétés14:19–29. CinelliM,ColesSR,KirwanK.2014. Analysisofthepotentialsof AlkanOlssonJ,BockstallerC,StapletonL,Knapen R,Therond O, multicriteriadecisionanalysismethodstoconductsustainability TurpinN, et al. 2009. Indicator frameworks supporting ex-ante assessment.Ecol.Indic.46:138–148. impact assessment of new policies for rural systems; a critical CORPEN. 2006. Des indicateurs AZOTE pour gérer des ac- reviewofagoalorientedframeworkanditsindicators.Environ. tions de maîtrise des pollutionsà l’échelle de la parcelle, de Sci.Policy12:562–572. l’exploitation et du territoire. Ministère de l’Ecologie et du Anonymous. 2011.Unoutildediagnosticdel’impactdespratiques Développement Durable, http://www.ecologie.gouv.fr/IMG/pdf/ agricolessurlabiodiversite:Outil“IBEA”:Impactdespratiques maquette_azote29_09.pdf,Paris. agricoles sur la Biodiversité des Exploitations Agricoles. FNE, CraheixD,AngevinF,BergezJE,BockstallerC,ColombB,Guichard INRA,MNHN,Paris,105p.(inrevision). L,etal.2012.MASC2.0,unoutild’évaluationmulticritèrepour Aveline A, Rousseau ML, Guichard L, Laurent M, Bockstaller estimerlacontributiondessystèmesdecultureaudéveloppement C, 2009. Evaluating an environmental indicator: case study of durable.Innov.Agronom.20:35–48. MERLIN,anassessmentmethodoftheRiskofNitrateLeaching. DelbaereB.2003.AninventoryofbiodiversityindicatorsinEurope, Agr.Syst.100:22–30. 2002.EuropeanEnvironmentAgency(EEA),Copenhagen. BilleterR,LiiraJ,BaileyD,BugterR,ArensP,AugensteinI,etal. FalqueA,FeschetP,GarrabéM, GilletC,LagardeV, Macombe C, 2008.Indicatorsforbiodiversityinagriculturallandscapes:apan- Europeanstudy.J.Appl.Ecol.45:141–150. etal.2013.ACVsociales:Effetssocio-économiquesdeschaïnes devaleur.FruitropThema,Montepllier,France. Bockstaller C, Girardin P, Van der Werf HGM. 1997. Use of agro- ecologicalindicatorsfortheevaluationoffarmingsystems.Eur. Féret S. 2004. Un outil misau point dans l’Ouest de la France : le J.Agron.7:261–270. diagnosticduRéseauagriculturedurable.TravauxetInnovations Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan MB, 110:39–42. GaillardG.2009.Comparisonofmethodstoassessthesustain- FeschetP.2014.AnalyseduCycledeVieSociale.Pourunnouveau abilityofagriculturalsystems.Areview.Agron.Sustain.Dev.29: cadreconceptueletthéorique.Thèsededoctoratdel’Université 223–235. Montpellier1–Scienceséconomiques,298p. D102,page10of12
Description: