ebook img

Isomorphism classes of abelian varieties over finite fields PDF

68 Pages·2016·0.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Isomorphism classes of abelian varieties over finite fields

Isomorphismclassesofabelianvarietiesoverfinitefields StefanoMarseglia Isomorphism classes of abelian varieties over finite fields Stefano Marseglia ©StefanoMarseglia,Stockholm,2016 Address:MatematiskaInstitutionen,StockholmsUniversitet,10691Stockholm E-mailaddress:[email protected] ISBN978-91-7649-444-8 PrintedinSwedenbyE-PrintAB2015,Stockholm,2016 Distributor:DepartmentofMathematics,StockholmUniversity Abstract Following[Del69]and[How95], itispossibletodescribepolarizedabelian varietiesoverfinitefieldsintermsoffinitelygeneratedfree(cid:90)-modulessat- isfying a list of easy to state axioms. In this thesis we address the prob- lem ofdevelopinganeffective algorithm to compute isomorphism classes of (principally) polarized abelian varieties over a finite field, together with their automorphism groups. Performing such computations requires the knowledge of the ideal classes (both invertible and non-invertible) of cer- tainordersinnumberfields. Hencewedescribeamethodtocomputethe ideal class monoid of an order and we produce concrete computations in dimension2,3and4. Sammanfattning Deligne [Del69] och Howe [How95] har visat att det är möjligt att beskriva ordinära polariserade abelska varieteter över ändliga kroppar i termer av ändligtgenereradefriaheltalsmodulersomuppfyllerenserieaxiom,vilkaär enklaattformulera. Idennaavhandlinganvändervidennabeskrivningför attutvecklaeneffektivalgoritmförattberäknaisomorfiklasseravprincip- ielltpolariseradeabelskavarieteteröverändligakroppar,tillsammansmed deras automorfigrupper. En sådan beräkning kräver kunskap om idealk- lasserna (både de inverterbara och de icke-inverterbara) av vissa talringar ialgebraiskatal-kroppar. Därförbeskrivervienmetodförattberäknaide- alklassmonoidenavtalringarochviredovisarkonkretaexempelidimension två,treochfyra. Contents Abstract v Sammanfattning vii Acknowledgements xi 1 Introduction 13 2 AbelianVarieties 15 2.1 AbelianVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Dualabelianvarietiesandpolarizations. . . . . . . . . . . . . . 17 2.4 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 TheRosatiinvolution . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Abelianvarietiesover(cid:67) . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Abelianvarietiesoverafinitefield . . . . . . . . . . . . . . . . . 22 2.8 Weilconjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.9 TheTatemoduleandcharacteristicpolynomialsofFrobenius 24 2.10 Honda-Tatetheory . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Theidealclassmonoid 27 3.1 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 TheIdealClassMonoidandthePicardGroup . . . . . . . . . . 29 3.3 GorensteinOrdersandCliffordmonoids . . . . . . . . . . . . . 31 3.4 ComputationofthePicardGroup . . . . . . . . . . . . . . . . . 34 3.5 Weakequivalenceclasses . . . . . . . . . . . . . . . . . . . . . . 36 3.6 ComputationofW(R) . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 ComputationoftheICM . . . . . . . . . . . . . . . . . . . . . . . 38 3.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.9 Conjugacyclassesofintegralmatrices . . . . . . . . . . . . . . . 41 4 TheDelignecategory 43 4.1 TheDelignecategoryL . . . . . . . . . . . . . . . . . . . . . . . 43 q 4.2 DualabelianvarietyandpolarizationsinL . . . . . . . . . . . 45 q 4.3 Isomorphismclassesinaordinaryisogenyclass . . . . . . . . . 46 5 Computing isomorphism classes of principally polarized abelian varieties 51 5.1 Computationalremarks . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Ellipticcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Abeliansurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Abelianvarietiesofhigherdimension . . . . . . . . . . . . . . . 58 References lxv

Description:
of the existence of objects such as the supersingular elliptic curves, whose endomorphism that most algorithms from classical number theory are developed only in to compute the ideal class monoid of an order in a number field. In particular we have that OK = ∏i OKi , see [Rei03, Theorem 10.5].
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.