Isomorphismclassesofabelianvarietiesoverfinitefields StefanoMarseglia Isomorphism classes of abelian varieties over finite fields Stefano Marseglia ©StefanoMarseglia,Stockholm,2016 Address:MatematiskaInstitutionen,StockholmsUniversitet,10691Stockholm E-mailaddress:[email protected] ISBN978-91-7649-444-8 PrintedinSwedenbyE-PrintAB2015,Stockholm,2016 Distributor:DepartmentofMathematics,StockholmUniversity Abstract Following[Del69]and[How95], itispossibletodescribepolarizedabelian varietiesoverfinitefieldsintermsoffinitelygeneratedfree(cid:90)-modulessat- isfying a list of easy to state axioms. In this thesis we address the prob- lem ofdevelopinganeffective algorithm to compute isomorphism classes of (principally) polarized abelian varieties over a finite field, together with their automorphism groups. Performing such computations requires the knowledge of the ideal classes (both invertible and non-invertible) of cer- tainordersinnumberfields. Hencewedescribeamethodtocomputethe ideal class monoid of an order and we produce concrete computations in dimension2,3and4. Sammanfattning Deligne [Del69] och Howe [How95] har visat att det är möjligt att beskriva ordinära polariserade abelska varieteter över ändliga kroppar i termer av ändligtgenereradefriaheltalsmodulersomuppfyllerenserieaxiom,vilkaär enklaattformulera. Idennaavhandlinganvändervidennabeskrivningför attutvecklaeneffektivalgoritmförattberäknaisomorfiklasseravprincip- ielltpolariseradeabelskavarieteteröverändligakroppar,tillsammansmed deras automorfigrupper. En sådan beräkning kräver kunskap om idealk- lasserna (både de inverterbara och de icke-inverterbara) av vissa talringar ialgebraiskatal-kroppar. Därförbeskrivervienmetodförattberäknaide- alklassmonoidenavtalringarochviredovisarkonkretaexempelidimension två,treochfyra. Contents Abstract v Sammanfattning vii Acknowledgements xi 1 Introduction 13 2 AbelianVarieties 15 2.1 AbelianVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Isogenies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Dualabelianvarietiesandpolarizations. . . . . . . . . . . . . . 17 2.4 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 TheRosatiinvolution . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Abelianvarietiesover(cid:67) . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Abelianvarietiesoverafinitefield . . . . . . . . . . . . . . . . . 22 2.8 Weilconjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.9 TheTatemoduleandcharacteristicpolynomialsofFrobenius 24 2.10 Honda-Tatetheory . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Theidealclassmonoid 27 3.1 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 TheIdealClassMonoidandthePicardGroup . . . . . . . . . . 29 3.3 GorensteinOrdersandCliffordmonoids . . . . . . . . . . . . . 31 3.4 ComputationofthePicardGroup . . . . . . . . . . . . . . . . . 34 3.5 Weakequivalenceclasses . . . . . . . . . . . . . . . . . . . . . . 36 3.6 ComputationofW(R) . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 ComputationoftheICM . . . . . . . . . . . . . . . . . . . . . . . 38 3.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.9 Conjugacyclassesofintegralmatrices . . . . . . . . . . . . . . . 41 4 TheDelignecategory 43 4.1 TheDelignecategoryL . . . . . . . . . . . . . . . . . . . . . . . 43 q 4.2 DualabelianvarietyandpolarizationsinL . . . . . . . . . . . 45 q 4.3 Isomorphismclassesinaordinaryisogenyclass . . . . . . . . . 46 5 Computing isomorphism classes of principally polarized abelian varieties 51 5.1 Computationalremarks . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Ellipticcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Abeliansurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Abelianvarietiesofhigherdimension . . . . . . . . . . . . . . . 58 References lxv
Description: