ISOLATION, IDENTIFICATION AND EVALUATION OF NATURAL ANTIOXIDANTS FROM AROMATIC HERBS CULTIVATED IN LITHUANIA CENTRALE LANDBOUWCATALOGUS 0000 0889 7700 Promotor Prof. Dr. Ae. de Groot, hoogleraar in de bio-organische chemie, Wageningen Universiteit Co-promotoren Dr. T.A. van Beek, universitair hoofddocent, Laboratorium voor Organische Chemie, Wageningen Universiteit Dr. Ir. J.P.H. Linssen, universitair hoofddocent, Sectie Levensmiddelenleer, Wageningen Universiteit Promotiecommissie Prof. Dr. Ir. I.M.C.M. Rietjens (Wageningen Universiteit) Prof. Dr. Ir. P.R. Venskutonis (Kaunas University of Technology, Lithuania) Prof. Dr. Ir. A.G.J. Voragen (Wageningen Universiteit) Dr. H.A.G. Niederlander (Rijksuniversiteit Groningen) j^30l /Jf Airidas Dapkevicius ISOLATION, IDENTIFICATION AND EVALUATION OF NATURAL ANTIOXIDANTS FROM AROMATIC HERBS CULTIVATED IN LITHUANIA (with a summary in English) (met een samenvatting in het Nederlands) (su santrauka lietuviskai) (com resumo em Portugues) Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman in het openbaar te verdedigen op dinsdag 29 januari 2002 des namiddags te twee uur in de Aula (, 3 Qq I 6 ISBN 90-5808-578-3 To my children leva and Simonas General introduction 1.1 Lipid oxidation in general 1 1.2 Food lipid oxidation mechanisms 2 1.2.1 Free radical autoxidation 2 1.2.2 Photooxidation 5 1.2.3 Enzyme-initiated lipid oxidation 6 1.2.4 Metal-catalysed lipid oxidation 6 1.2.5 Formation of secondary products of lipid oxidation 7 1.3 Prevention of lipid oxidation by antioxidants 12 1.3.1 Primary and secondary antioxidants 13 1.3.2 Synthetic and natural antioxidants 17 1.3.3 Inhibitors of enzyme-initiated lipid oxidation 18 1.3.4 Antioxidative enzymes 18 1.3.5 Molecular structure and antioxidative efficiency 19 1.4 Methods of antioxidant activity assessment 20 1.4.1 Measuring lipid oxidation 20 1.4.1.1 Evaluation of primary oxidation changes 21 1.4.1.2 Assessment of secondary oxidation changes 21 1.4.2 Stability tests and model systems for antioxidant activity evaluation 22 1.5 Natural antioxidants 26 1.5.1 Tocopherols 27 1.5.2 Ascorbic acid 28 1.5.3 Other antioxidant substances and their sources 28 1.6 Application of natural antioxidants 32 1.7 Scope and content of this thesis 33 1.8 References and notes 35 Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania 2.1 Introduction 49 2.2 Experimental 50 2.2.1 Plant material 50 2.2.2 Isolation techniques 51 2.2.3 Evaluation of antioxidant activity 53 2.2.3.1 /3-Carotene bleaching (agar diffusion method) 53 2.2.3.2 j3-Carotene bleaching (spectrophotometric method) 54 2.3 Results and discussion 55 2.3.1 Yield of isolates 55 2.3.2 Results of the agar diffusion test 56 2.3.3 Results of the spectrophotometric test 59 2.4 Conclusions 61 2.5 References 61 Rapid spectroscopic screening for antioxidant activity in herb isolates with the /3-carotene-linoleic acid model system 3.1 Introduction 65 3.2 Experimental 69 3.2.1 Preparation of herb isolates 69 3.2.2 Spectrophotometric evaluation of j8-carotene bleaching in the /3-CLAMS 69 3.3 Results and discussion 70 3.4 Conclusions 72 3.5 References 73 On-line detection of antioxidative activity in HPLC eluates by chemiluminescence 4.1 Introduction 75 4.2 Experimental 77 4.2.1 HPLC-CL conditions and instrumental setup 77 4.2.2 HPLC-CL reagents and tested antioxidants 78 4.3 Results and discussion 79 4.3.1 Initial tests 79 4.3.2 Off-line CL experiments 80 4.3.3 Optimisation of the HPLC-CL system 83 4.3.4 Detection of radical scavenging activity 84 4.4 Conclusions 87 4.5 References 88 Evaluation and comparison of two improved techniques for the on line detection of antioxidants in HPLC eluates 5.1 Introduction 91 5.2 Experimental 92 5.2.1 HPLC-CL instrumental set-up 92 5.2.2 HPLC-CL reagents and gradient conditions 92 5.2.3 HPLC-DPPH* instrumental set-up 94 5.2.4 HPLC-DPPH* reagents and gradient conditions 94 5.2.5 Sample preparation 95 5.2.6 Detection limits, minimum detectable amounts (MDA), and minimum detectable concentrations (MDC) 95 5.2.7 Statistical analysis 97 5.3 Results and discussion 97 5.3.1 Improvements in DPPH* and luminol CL detection 97 5.3.2 The luminol chemiluminescence quenching method 98 5.3.3 The DPPH* quenching method 99 5.3.4 Consequences of eluent composition and eluent and reagent solution pH for MDA values with DPPH* detection 101 5.3.5 Comparison of MDC and MDA values for both methods 103 5.4 Conclusions 104 5.5 References 105 Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves 6.1 Introduction 107 6.2 Experimental 107 6.2.1 General experimental procedures 107 6.2.2 Plant material 109 6.2.3 Extraction and isolation procedures 109 6.2.3.1 Procedure I 109 6.2.3.2 ProcedureII 111 6.2.4 Assessment of radical scavenging activity of fractions 111 6.2.5 Off-line ABTS*+ radical scavenging assay 112 6.2.6 Off-line DPPH* radical scavenging assay 112 6.3 Results and discussion 113 6.3.1 Activity-guided isolation of radical scavenging compounds 113 6.3.2 Structure elucidation 115 6.3.3 Radical scavenging activity detected with HPLC-DPPH* 119 6.3.4 DPPH* and ABTS*+ scavenging efficiency of compounds 1 and 2 120 6.4 Conclusions 121 6.5 References 122 General discussion 125 Summary 131 Samenwatting 135 Trumpas disertacijos turinys 139 Resumo 143 Acknowledgements 147 Curriculum vitae 149 List of publications 151 A^OJW, 3^ Due to its specific aroma and the volatility of thymol and carvacrol, the essential oil from thyme has a limited use as a food antioxidant. This thesis. Due to the complexity of food products and the variety of possible oxidation mechanisms, it is not possible to find a single antioxidant that can control all factors involved in food oxidation. This thesis. Six, P. 1994. Current research in natural food antioxidants. Inform, 5, 679—687. Decker, E.A. 1998. Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends Food Sci. Technol., 9, 241-248. It is perfectly possible for an antioxidant to protect lipids against oxidative damage whilst accelerating damage to other biomolecules. Aruoma, O.I., Spencer, J.P.E., Warren, D., Jenner, P., Butler, J. and Halliwell, B. 1997. Characterization of food antioxidants, illustrated using commercial garlic and ginger preparations. Food Chem., 60, 149-156. "Natural * safe". Reische, D.W., Lillard, D.A. and Eitenmiller, R.R. 1998. Antioxidants, p. 423-448. In: C.C. Akoh andD.B. Min (eds). Food Lipids. Marcel Dekker, New York. Pokorny, J. 1991. Natural antioxidants for food use. Trends Food Sci. Technol., 2, 223-227. When reporting analytical results on commercial phytopharmaceuticals or dietary supplements, researchers should always report brand names, type, dosage and batch numbers so that others may repeat their investigations. Petty, H.R., Fernando, M., Kindzelskii, A.L., Zarewych, B.N., Ksebati, M.B., Hryhorczuk, L.M. and Mobashery, S. 2001. Identification of colchicine in placental blood from patients using herbal medicines. Chem. Res. Toxicol., 14, 1254-1258. Economical considerations are just one - and not always the most important - reason for the brain-drain from Eastern European countries. Life is a constant battle to avoid becoming rancid. Gary G. Duthie Stellingen behorend bij het proefschrift: Isolation, Identification and Evaluation of Natural Antioxidants from Aromatic Herbs Cultivated in Lithuania Airidas Dapkevicius, 29 januari 2002
Description: