ebook img

Investigations in Entity Relationship Extraction PDF

156 Pages·2022·2.729 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigations in Entity Relationship Extraction

Studies in Computational Intelligence 1058 Sachin Sharad Pawar Pushpak Bhattacharyya Girish Keshav Palshikar Investigations in Entity Relationship Extraction Studies in Computational Intelligence Volume 1058 SeriesEditor JanuszKacprzyk,PolishAcademyofSciences,Warsaw,Poland The series “Studies in Computational Intelligence” (SCI) publishes new develop- mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand withahighquality.Theintentistocoverthetheory,applications,anddesignmethods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life sciences, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms,evolutionarycomputation,artificialintelligence,cellularautomata,self- organizingsystems,softcomputing,fuzzysystems,andhybridintelligentsystems. Ofparticularvaluetoboththecontributorsandthereadershiparetheshortpublica- tiontimeframeandtheworld-widedistribution,whichenablebothwideandrapid disseminationofresearchoutput. This series also publishes Open Access books. A recent example is the book Swan,Nivel,Kant,Hedges,Atkinson,Steunebrink:TheRoadtoGeneralIntelligence https://link.springer.com/book/10.1007/978-3-031-08020-3 IndexedbySCOPUS,DBLP,WTIFrankfurteG,zbMATH,SCImago. AllbookspublishedintheseriesaresubmittedforconsiderationinWebofScience. · · Sachin Sharad Pawar Pushpak Bhattacharyya Girish Keshav Palshikar Investigations in Entity Relationship Extraction SachinSharadPawar PushpakBhattacharyya TCSResearch DepartmentofComputerScience Pune,India andEngineering IndianInstituteofTechnologyBombay GirishKeshavPalshikar Mumbai,India TCSResearch Pune,India ISSN 1860-949X ISSN 1860-9503 (electronic) StudiesinComputationalIntelligence ISBN 978-981-19-5390-3 ISBN 978-981-19-5391-0 (eBook) https://doi.org/10.1007/978-981-19-5391-0 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface With the advent of the Internet, a large amount of digital text is generated every day,suchasnewsarticles,researchpublications,blogs,socialmedia,andquestion answeringforums.Asalotofvaluableinformationishiddenwithinsuchtext,itis essentialtodeveloptechniquesforautomaticallyextractinginformationfromthese documents.SeveralapplicationssuchasNaturalLanguageUnderstanding,Question Answering,andInformationRetrievalwouldbenefitfromthisinformation.Themost basicunitofinformationisanentity,andgenerally,theseentitiesoccurinsentences withvarioussemanticrelationsamongthem.Theentitiesandrelationsareasmall butimportantsteptowardunderstandingthemeaningofthattext. This monograph is a result of a Ph.D. thesis investigating various techniques for entity and relation extraction. It provides an extensive overview of traditional entity and relation extraction techniques as well as the recent deep learning-based techniques. The book also focuses on two important types of relation extraction techniques—(i) joint extraction techniques where entities and relations are jointly extractedwhereboththetasksofentityandrelationextractionhelpeachother,and(ii) extractionofcomplexrelationswheretherelationtypesmaybeN-ary(i.e.,having more than two entity mention arguments) and cross-sentence (i.e., entity mention argumentsmaybespreadacrossmultiplesentences). Commercially, the tasks of entity and relation extraction are quite important as they serve as key prerequisites for several downstream NLP applications such as KnowledgeGraphCreation,QuestionAnswering,IntelligentInformationRetrieval, and Summarization. The knowledge of entity mentions present in a text along with semantic relations among them is an important step toward natural language understanding. Pune,India SachinSharadPawar July2022 PushpakBhattacharyya GirishKeshavPalshikar v Acknowledgements This monograph is based on my Ph.D. thesis work jointly carried out at Indian InstituteofTechnologyBombayandTCSResearch,underthesupervisionofProf. PushpakBhattacharyya(IITBombay)andGirishKeshavPalshikar(TCSResearch). Sofirstly,Iwouldliketoexpress mygratitude towardbothmysupervisorswhose supportandguidancewereimmenselyimportantthroughoutmyPh.D.work.Ialso thankmycommitteemembers,Prof.MalharKulkarni,Prof.OmDamani,andProf. Saketha Nath, for their invaluable feedback. For transitioning the thesis into this monograph, I would like to thank Prof. Pushpak for his invaluable comments and suggestions. Iamalsogratefultomyemployer,TataConsultancyServices,forgivingmethe opportunity to pursue Ph.D. while working with them. I was fortunate to have a strong group of fellow Ph.D. students from IITB with whom I had several useful technical and non-technical discussions. I would especially like to thank Girish, Rudra,Joe,Raksha,Kevin,Sandeep,Diptesh,Anoop,andAaditya.Iamalsothankful tomycolleagues-cum-friendsinTCSPune—Swapnil,Nitin,Sangam,Kripa,Sapan, Avadhut,Vikrant,Shailesh,Manoj,andRajiv.Ialwaysdiscussedmyresearchwork indetailwithSwapnilandNitin.Theyhaveprovidedmewithhelpfulsuggestions throughout my Ph.D. journey. I would also like to thank Sandeep and Kedar, my long-timefriendssincemymaster’sdaysinIITB,forourregularget-togethersthat helpedmerefreshmymind. Finally, I would like to express my gratitude toward my family—my parents (SharadandSarita),mywifeAmeya,myin-laws(SadanandandVijayalaxmi).They gave me strength and support to persistently carry on my research throughout my Ph.D.journey. July2022 SachinSharadPawar vii Contents 1 Introduction ................................................... 1 1.1 Entities ................................................... 1 1.2 Relations .................................................. 2 1.2.1 Global-versusMention-levelRelations ................. 3 1.3 Motivation ................................................ 4 1.4 ResearchGapsandObjectives ................................ 5 1.4.1 End-to-endRelationExtraction ........................ 6 1.4.2 N-aryCross-sentenceRelationExtraction ............... 7 1.5 OrganizationoftheMonograph ............................... 8 References ..................................................... 8 2 LiteratureSurvey .............................................. 11 2.1 RelationExtraction ......................................... 11 2.1.1 Feature-basedMethods ............................... 11 2.1.2 KernelMethods ...................................... 14 2.1.3 NeuralApproaches ................................... 23 2.1.4 Datasets ............................................ 23 2.1.5 Evaluation .......................................... 24 2.2 JointEntityandRelationExtraction ........................... 25 2.2.1 MotivatingExample .................................. 26 2.2.2 OverviewofTechniques .............................. 26 2.2.3 JointInferenceTechniques ............................ 27 2.2.4 JointModels ........................................ 30 2.2.5 ExperimentalEvaluation .............................. 33 2.3 N-aryCross-sentenceRelationExtraction ...................... 37 2.3.1 ExtractingCross-sentenceRelations .................... 37 2.3.2 ExtractingN-aryandCross-sentenceRelations ........... 38 References ..................................................... 40 ix x Contents 3 JointInferenceforEnd-to-endRelationExtraction ................ 45 3.1 Introduction ............................................... 45 3.1.1 ProblemDefinition ................................... 46 3.1.2 MotivationforJointExtraction ......................... 46 3.2 Background:MarkovLogicNetworks(MLN) .................. 47 3.2.1 BasicsofFirst-orderLogic ............................ 47 3.2.2 BasicsofMLNs ..................................... 48 3.2.3 FormalDefinition .................................... 49 3.2.4 InferenceinMLNs ................................... 49 3.3 BuildingBlocksforOurApproach ............................ 50 3.3.1 IdentifyingEntityMentionCandidates .................. 50 3.3.2 EntityTypeClassifier ................................. 51 3.3.3 EntityTypeAgnosticRelationClassifier ................ 52 3.3.4 PipelineRelationClassifier ............................ 53 3.4 JointExtractionusingInferenceinMarkovLogicNetworks (MLN) .................................................... 53 3.4.1 Motivation .......................................... 53 3.4.2 DomainsandPredicates ............................... 54 3.4.3 GenericRules ....................................... 55 3.4.4 Sentence-specificRules ............................... 56 3.4.5 AdditionalSemanticRules ............................ 59 3.4.6 JointInference ....................................... 60 3.5 Example .................................................. 60 3.6 ExperimentalAnalysis ...................................... 62 3.6.1 LimitationsofOurApproach .......................... 65 References ..................................................... 65 4 JointModelforEnd-to-EndRelationExtraction .................. 67 4.1 Motivation ................................................ 67 4.2 AllWordPairsModel(AWP-NN) ............................ 68 4.2.1 FeaturesfortheAWP-NNModel ....................... 69 4.2.2 ArchitectureoftheAWP-NNModel .................... 71 4.3 InferenceUsingMarkovLogicNetworks ...................... 73 4.4 ExperimentalAnalysis ...................................... 76 4.4.1 Datasets ............................................ 76 4.4.2 ImplementationDetails ............................... 77 4.4.3 Results ............................................. 77 4.4.4 AnalysisofResults ................................... 80 4.5 Domain-SpecificEntitiesandRelations ........................ 82 4.5.1 AdverseDrugReactions .............................. 82 4.5.2 TAC2017:ADRExtractionTask ....................... 84 References ..................................................... 87 Contents xi 5 N-aryCross-SentenceRelationExtraction ........................ 89 5.1 Introduction ............................................... 89 5.2 ProblemDefinition ......................................... 92 5.2.1 ComparisonwithRelevantPastWork ................... 93 5.3 ProposedApproach ......................................... 93 5.3.1 ConstructingSequenceRepresentations ................. 95 5.3.2 ConstrainedSubsequenceKernel(CSK) ................. 96 5.3.3 FormalDefinitionofCSK ............................. 97 5.3.4 ClassifyingCandidateRelationInstances ................ 98 5.4 ExperimentalAnalysis ...................................... 102 5.4.1 Datasets ............................................ 102 5.4.2 ImplementationDetails ............................... 106 5.4.3 AnalysisofResultsandErrors ......................... 107 5.5 DiscussiononDecompositionofN-aryRelations ............... 109 5.5.1 ExamplesofVariousRelationTypes .................... 110 5.5.2 GeneralizedTheorem ................................. 112 References ..................................................... 113 6 RecentAdvancesinEntityandRelationExtraction ................ 115 6.1 JointEntityandRelationExtraction ........................... 115 6.1.1 UsingSpan-BasedRepresentationforEntityMentions .... 115 6.1.2 UsingBERTEmbeddings ............................. 118 6.2 N-aryCross-SentenceRelationExtraction ..................... 118 6.2.1 StandardDataset ..................................... 118 6.2.2 GraphNeuralNetworks ............................... 119 6.2.3 UsingBERTEmbeddings ............................. 119 References ..................................................... 120 7 Conclusions .................................................... 123 7.1 SummaryoftheMonograph ................................. 123 7.2 FutureDirections ........................................... 125 References ..................................................... 127 AppendixA:Foundations .......................................... 129

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.